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Summary

This dissertation considers three approaches that partially or completely eliminate spec-
ulative execution from modern hardware architectures, as a finer-grained approach to
mitigating the speculative execution vulnerabilities. Current mitigations for the specula-
tive execution vulnerabilities only offer partial protection, have prohibitive performance
penalties, and apply globally so mitigations must be chosen during hardware manufacture
or data center deployment. Systems software developers have little or no control over
which mitigations are deployed, and therefore no choice in whether they endure the risk of
speculation or suffer the performance penalty of mitigations.

I begin by tracing the root cause of the speculative execution vulnerabilities to a
fundamental design flaw in modern superscalar hardware architectures—that all speculated
branches and memory loads leave unprotected microarchitectural state vulnerable to attack.
Many mitigations have been proposed and implemented for many variants of the speculative
execution vulnerabilities, but none of the mitigations do more than limit some damage
caused by some variants. In order to demonstrate that a more comprehensive solution to
the vulnerabilties is feasible in modern hardware architectures, I propose three alternative
approaches that partially or completely eliminate speculative execution.

Heterogeneous multicore systems that combine both speculative and non-speculative
cores (codename Gluon) make it possible to entirely disable speculation for security-critical
or untrusted sections of code, by running that code on a non-speculative core. Code
running on a speculative core performs as well as it would on an ordinary speculative
hardware architecture. The systems software developer has the power to choose which
code runs with the performance advantage of speculation, and which code runs with the
security advantage of no speculation. However, Gluon-type multicores only offer the ability
to disable speculation at the process or thread level. A finer-grained approach is desirable,
to limit the performance penalty of disabled speculation to the smallest possible region of
code.

Superscalar processors without speculation features (codename Tachyon) keep the
performance advantages of most common features in modern hardware architectures—such
as dynamic multiple issue, dynamic pipeline scheduling, out-of-order execution, and register
renaming—while avoiding the risk of speculative execution. Such processors do not perform
as well as equivalent speculative processors, but the results of this work indicate that they
can perform better than equivalent speculative processors with all relevant mitigations for
the speculative execution vulnerabilities applied. The performance penalty of eliminating
speculation can also be partially offset by increasing the size of fetch and issue stage
components in the pipeline. Tachyon-type cores are always non-speculative, so they do not
give systems software developers the option to choose between performance and security.
However, these cores may be desirable for multitenant infrastructure deployments that
exclusively serve privacy-centered workloads, such as processing hospital patient data.
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Superscalar processors that include both speculative and non-speculative variants of
branch and memory load instructions (codename Dyon) make it possible to disable specu-
lation at the level of a single instruction, by selecting a non-speculative instruction instead
of a speculative instruction. Making Dyon-type features accessible to systems software
developers requires modest changes to higher-level languages and compiler toolchains—to
annotate which regions of code should be non-speculative, and compile that code down
to non-speculative instructions. The performance of Dyon-type cores is proportional
to the use of speculative and non-speculative instructions, so only regions of code that
disable speculation pay a performance penalty. Out of the three approaches considered
in this dissertation, Dyon-type cores are best for large-scale general-purpose multitenant
infrastructure deployments, because they simplify resource allocation by keeping all cores
identical, have no performance penalty for code compiled as entirely speculative, and give
systems software developers the most precise control over speculation.
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Chapter 1

Introduction

A series of vulnerabilities related to speculative execution and side-channel attacks rose
to attention in 2018. The techniques behind the speculative execution vulnerabilities
were not new, but the combined application of the techniques was more sophisticated,
and the security impact more severe, than previously considered possible. The models
of secure isolation employed by multitenant infrastructures such as virtual machines and
containers offer little protection from the speculative execution vulnerabilities. While
mitigation patches have typically been applied quickly for the known variants of these
vulnerabilities, these patches work around the vulnerabilities but do not eliminate them,
and the probability of further variants being discovered in the coming years is high. Not all
modern processors use speculative execution as a technique for instruction-level parallelism,
but the processors that do use it provide no mechanism to disable the feature entirely.

Completely eliminating speculative execution from modern hardware architectures sig-
nificantly degrades performance [66, 76, 110, 128, 19, 48, 104]. However, current approaches
to mitigating the speculative execution vulnerabilties are largely global in nature, working
on the premise that speculative execution is a hidden microarchitectural optimization, and
so the mitigations must also be hidden in the microarchitecture. These global mitigations
have severe performance penalties, so large-scale multitenant infrastructure providers
are forced to choose between enabling mitigations globally on thousands or hundreds of
thousands of machines, or disabling the mitigations for a substantial performance boost,
on the assumption that successful exploits of the speculative execution vulnerabilities will
be rare enough to have a statistically low impact. The not-very-well-kept secret of the
industry is that public cloud providers generally run with many speculative execution
mitigations disabled, because it is not cost effective to enable them.

If we shift the paradigm slightly, and stop viewing speculation as a universal op-
timization hidden in the microarchitecture, it opens the door to different approaches.
Systems software developers are familiar with making trade-offs between security and
performance, and with the fact that different technical choices may be appropriate for
different software contexts such as host kernels and operating systems, guest kernels and
operating systems, application/workload software, and encrypted data. The choice between
the performance boost of running with speculation and the security benefits of running
without speculation could be made at a much tighter level of granularity than an entire
machine or an entire data center, if hardware architectures supported it. A finer-grained
approach to the speculative execution vulnerabilities has the potential to both improve
the security of security-critical code and data—by entirely disabling speculation when
that is needed—at the same time as reducing the system-wide performance penalty for
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large-scale deployments—by limiting disabled speculation to the smallest possible scope.
A significant percentage of the code execution in any general-purpose host or guest

operating system can be safely and securely run with speculative execution enabled. As long
as speculative execution continues to have a performance advantage over non-speculative
execution, it will be desirable to restrict non-speculative execution to the smallest possible
region of running code. However, current hardware architectures have no way to identify
whether a region of code should be run speculatively or non-speculatively, and no mechanism
to switch between speculative and non-speculative modes of execution. We first explore a
simplistic approach to designing hardware capable of enabling and disabling speculative
execution in response to higher-level demand, by combining speculative and non-speculative
cores in a heterogeneous multicore architecture, which gives systems software developers
control over speculation at the level of a process or thread. We then explore the logical
limits of superscalar processors without speculative execution within the context of modern
hardware architectures. We finally explore an alternative approach to designing hardware
capable of enabling and disabling speculative execution, by combining speculative and
non-speculative instructions on a single core, which gives systems software developers
control over speculation at the level of compiler instruction selection. While the scope of
this dissertation is limited to preliminary exploration and comparison of possible future
directions for hardware and software, we hope that it may help encourage hardware vendors
to consider the kind of fundamental hardware architecture changes the industry needs to
effectively control speculative execution.

Throughout this dissertation, we use the RISC-V architecture as a base for discussion
and implementation. This choice is pragmatic rather than dogmatic—the RISC-V instruc-
tion set architecture (ISA) is open source, has established open source implementations
of cores available for reuse and modification, and has extensive open source tools for
implementing and simulating custom RISC-V cores and SoCs. It is the open nature of
RISC-V that makes it so adaptable for design space exploration, and as such, RISC-V has
been a target of substantial recent research on hardware architectures, including speculative
execution and related vulnerabilities. We do not intend our choice of RISC-V to imply that
the architecture is universally superior to other more mature architectures, such as x86 or
ARM; we recognize that RISC-V is still in a relatively early stage of architecture design
and implementation and has certain limitations. Nor do we expect to see RISC-V servers
replace the x86 and ARM servers currently running in large scale public clouds anytime
soon. However, the insight gained through this work has microarchitectural implications
for all speculative superscalar processors, no matter what ISA they implement.

The next chapter provides necessary background for the work of the dissertation.
Chapter 3 explores combining speculative and non-speculative cores in a heterogeneous
multicore architecture. Chapter 4 explores the logical limits of superscalar pipelining
techniques without speculation in the microarchitecture of a standard ISA. Chapter 5
explores combining speculative and non-speculative instructions in a single ISA, adding
instructions for selective speculation as an extension to the RISC-V ISA.
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Chapter 2

Background

Many modern computing workloads run in multitenant environments, where each physical
machine is split into hundreds or thousands of smaller units of computing, generically
called guests. Cloud and containers are currently the leading approaches to implementing
multitenant infrastructures, but other related technologies, such as unikernels or serverless,
are also variations on multitenant infrastructures. The guests in a cloud deployment are
commonly called virtual machines or cloud instances, while the guests in a container
deployment are commonly called containers. Typically, a single tenant (a user or group of
users) is granted access to deploy guests in an orchestrated fashion across a cloud or cluster
made up of thousands or hundreds of thousands of physical machines located in the same
data center or across multiple data centers, to facilitate operational flexibility in areas such
as capacity planning, resiliency, and reliable performance under variable load. Each guest
runs its own (often minimal) operating system and application workloads, and maintains
the illusion of being a physical machine, both to the end users who interact with the
services running in the guests, and to developers who are able to build those services using
familiar abstractions, such as programming languages, libraries, and operating system
features. The illusion, however, is not perfect, because ultimately the guests do share
the hardware resources (CPU, memory, cache, devices) of the underlying physical host
machine, and consequently also have greater access to the host’s privileged software (kernel,
operating system) than a physically distinct machine would have.

Ideally, multitenant environments would offer strong isolation of the guest from the host,
and between guests on the same host, but reality falls short of the ideal. The approaches
that various implementations have taken to isolating guests have different strengths and
weaknesses. For example, containers share a kernel with the host, while virtual machines
may run as a process in the host operating system or a module in the host kernel, so they
expose different attack surfaces through different code paths in the host operating system.
Fundamentally, however, all existing implementations of virtual machines and containers
are leaky abstractions, exposing more of the underlying software and hardware than is
necessary, useful, or desirable. New security research starting in 2018 delivered a further
blow to the ideal of isolation in multitenant environments, demonstrating that certain
hardware vulnerabilities related to speculative execution—including Spectre, Meltdown,
Foreshadow, L1TF, and variants—can easily bypass the software isolation of guests.

Because multitenancy has proven to be useful and profitable for a large sector of the
computing industry, it is likely that a significant percentage of computing workloads will
continue to run on multitenant infrastructure for the foreseeable future. Randal [99]
examined the co-evolution of software and hardware for multitenant infrastructures over
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sixty years of history, and how the trade-offs made along the way led to the current tension
between the lofty ideals of security versus the flawed reality. This dissertation focuses on
the hardware dimension of multitenant infrastructures, and particularly on the impact of
speculative execution vulnerabilities.

In the context of this dissertation, it is worth keeping in mind that unlike desktop
systems—where a relatively small number of cores run a relatively small number of
processes for a small number of closely-related users (perhaps only one human user)—
multitenant systems run a massive number of processes/workloads on a massive number of
cores for a massive number of unrelated users. At the microarchitecture level, this means
that rather than optimizing for executing lengthy sequences of contiguous instructions
on a core, the implementation needs to optimize for sharing the core between unrelated
workloads and users, with a tendency toward executing shorter sequences of contiguous
instructions and rapidly switching between multiple unrelated instruction streams. The
inherently fragmented nature of multitenant systems does not dictate a radical departure
from established microarchitecture designs, but it is suggestive of directions for exploration.

2.1 Terminology

For the sake of clarity, this dissertation consistently uses certain modern or common terms,
even when discussing literature that used various other terms for the same concepts.

� cloud: Implementation approaches that adopt the label “cloud” are typically virtual
machines with added orchestration features to enhance portability. Cloud implemen-
tations also tend to favor lighter-weight guest images, which enhances performance
and reduces complexity, though cloud images are generally not quite as minimal as
container images.

� container: The term “container” does not have a single origin, but some early
relevant examples of use are Banga et al. [12] in 1999, Lottiaux and Morin [77] in
2001, Morin et al. [86] in 2002, and Price and Tucker [97] in 2004. Early literature
on containers confusingly referred to them as a kind of virtualization [97, 114, 84,
60, 20, 24], or even called them virtual machines [114]. As containers grew more
popular, the confusion shifted to virtual machines being called containers [17, 130].
This dissertation uses the term “container” for multitenant deployment techniques
involving process isolation on a shared kernel (in contrast with virtual machine, as
defined below). However, in practice the distinction between containers and virtual
machines is more of a spectrum than a binary divide. Techniques common to one can
be effectively applied to the other, such as using system call filtering with containers,
or using seccomp sandboxing or user namespaces with virtual machines.

� guest: The term “guest” had some early usage in the 1980s for the operating system
image running inside a virtual machine [87], but was not common until the early
2000s [121, 13]. This dissertation uses “guest” as a general term for operating system
images hosted on multitenant infrastructures, but occasionally distinguishes between
virtual machine guests and container guests.

� kernel: A variety of different terms appear in the early literature, including “su-
pervisory program” [25], “supervisor program” [5], “control program” [89, 93, 2],
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“coordinating program” [93], “nucleus” [18, 26], “monitor” [125], and ultimately
“kernel” around the mid-1970s [74, 96]. This dissertation uses the modern term
“kernel”.

� process: The early literature tended to use the terms “job” [103] or “program” [25,
93, 5], and “process” only appeared around the mid-1960s [30, 1]. This dissertation
uses the modern term “process”. The early use of “multiprogramming” meaning
“multiprocessing” was derived from the early use of “program” meaning “process”.

� serverless: Implementation approaches that adopt the label “serverless” tend to
emphasize portability and minimizing complexity. They rely on the underlying
infrastructure—typically some combination of bare metal, virtual machines, and/or
containers—for whatever secure isolation and performance they provide.

� unikernel: Implementation approaches that adopt the label “unikernel” take mini-
malist guest images to an extreme, by replacing the kernel and operating system of
the guest with a set of highly-optimized libraries that provide the same functionality.
The code for an application workload is compiled together with the small subset of
unikernel libraries required by the application, resulting in a very small binary that
runs directly as a guest image. Historically, unikernels have sacrificed portability of
guest images, by targeting only a limited set of virtual machine implementations as
their host, but recent work has explored running unikernels as containers [126]. The
unikernel approach also reduces the portability of application code, since unikernel
frameworks tend to require the application code to be written in a specific way to
integrate with the unikernel libraries.

� virtual machine: This dissertation uses the term “virtual machine” for multi-
tenant deployment techniques involving the replication/emulation of real hardware
architectures in software (in contrast with container, as defined above). The code
responsible for managing virtual machine guests on a physical host machine is often
called a “hypervisor” or “virtual machine monitor”, both derived from early terms
for the kernel, “supervisor” and “monitor”. In many early implementations of virtual
machines, the host kernel managed both guests and ordinary processes.

2.2 Time-sharing on mainframes

The earliest form of hardware for multitenant infrastructures was time-sharing systems on
mainframes. While the hardware of today is radically different than the hardware of the
1950s-1970s, several key concepts continue to be relevant.

The first key concept was simply the ability to run more than one process on a machine
at the same time. This concept was originally called multiprogramming and evolved through
a series of hardware architectures in the 1950s, notably the IBM 705 [103], EDSAC [124],
UNIVAC LARC [34], STRETCH (IBM 7030) [33, 25], and TX-2 [41]. Multiprogramming
involved both multitasking (as simple context-switching) and multiprocessing (as multiple
CPUs and dedicated I/O processors), which introduced a risk of processes disrupting the
operation of other processes on the same machine.

So, the first key concept led naturally to the second key concept: isolating processes to
prevent them disrupting each other. Initially, this work revolved around the now familiar

12



VServer

POSIX

m
ul

tip
ro

gr
a

m
m

in
g

Plessey System 250

UNIX

Chicago Magic Number Machine

VMwareDiscoVM/370CP-67/CMS

capabilitiesB5000

CP-40/CMS

M44/44X

1950 1960 1970 1980 1990 2000 2010 today

chroot

CAP

Linux

CAL-TSS

MINIX

Multics

BSD

POSIX.1e

LXC Docker

Capsicum

OCI

KVM

QEMU

Xen

ukvm

LightVM

Kata

Denali

System/38

KubernetesBorg

NEMU

AWS

hvt

jails

SunOS Solaris Zones

OpenVZ

iAPX 432

crosvm Firecracker

CTSS

Influence

direct

indirect

UML

AS/400

Figure 2.1: The evolution of multitenant infrastructures. Reprinted from Randal [99].

approach of a small privileged kernel with unrestricted access to all hardware resources
and running processes, as well as responsibility for potentially disruptive operations such
as memory and storage allocation, process scheduling, and interrupt handling, combined
with restrictions on any software outside the kernel to limit access to these risky features.
STRETCH [25] in the 1950s and IBM System/360 [5] in the 1960s were significant early
examples of hardware architectures designed to provide hardware support for kernel process
isolation.

The concept of process isolation led to two major divergent schools of thought on
hardware security for the multitenant systems of the time—capabilities and virtual ma-
chines—both initially focused on strengthening process isolation by adding memory
isolation features. Capabilities viewed secure isolation as an essential feature of the hard-
ware and operating system, which should be available to every process [99, pp. 6-8]. Virtual
machines approached secure isolation at a different level of granularity, emphasizing the
ability to run an entire operating system in an isolated environment by closely replicating
the behavior of physical hardware [99, pp. 8-11]. Both capabilities and virtual machines
depended heavily on custom hardware implementations of their security features—the
noteworthy early hardware examples for capabilities were the Chicago Magic Number
Machine [37, 38], CAL-TSS [72, pp. 52-57], CAP [88, 123], IBM System/38 [14, 54], and
Intel iAPX 432 [55, 49, 79, 91], and for virtual machines were the IBM M44/44X [89],
CP-40/CMS and CP-67/CMS on the IBM System/360 [2, 18, 29], and VM/370 on the
IBM System/370 [47, 29]. The fundamental principles of these two major divergent schools
of thought continue today, as a dichotomy between modern containers [99, pp. 15-20] and
modern virtual machines [99, pp. 12-15].

2.3 General-purpose hardware and general-purpose

operating systems

As early as the 1960s, hardware vendors recognized that designing complete custom
hardware, custom operating systems, and custom application software for each generation
of their products was an expensive way to approach systems development. In 1964, Amdahl
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et al. [5] discussed the philosophy of “general-purpose CPU design for communications-
oriented systems” as a driving design principle for the IBM System/360. The idea led to a
third key concept that survives in modern multitenant infrastructures—portability made
possible by architectural stratification and standardization.

The 1970s and 1980s saw the rise of general-purpose hardware capable of running
multiple different operating systems, general-purpose operating systems capable of running
on multiple different hardware architectures, and application/workload software capable
of running on multiple different operating systems and hardware architectures. On the
hardware side, companies like DEC, Honeywell, HP, Intel, and Xerox shifted their product
lines toward simpler general-purpose hardware architectures that no longer supported the
security features of capabilities [90, 79, 115] or virtual machines [31, 42]. On the operating
system side, MIT’s Compatible Time-Sharing System (CTSS) [28, 125] laid the foundation
for Multics [27], which later inspired UNIX [102] and its robust mutation, the Berkeley
Software Distribution (BSD) [83, 82], followed by Solaris, Linux, and their many variants.

On one hand, stratification and standardization were a substantial benefit to the
hardware and software industries, as both hardware and software architectures grew so
much more complex over the decades, that the only sustainable approach to ongoing
development of the full hardware and software stack was to break it into modular and
recombinable hardware components—such as CPUs, memory, and storage—together
with modular and recombinable software components—such as kernels, system utilities,
operating systems, and applications. On the other hand, stratification and standardization
were also a source of risk, as researchers and engineers working at one architectural level
tended to have less and less exposure over time to how other levels actually functioned,
across the boundaries of microarchitecture, instruction set architecture, peripherals, kernel
and user space features, and application/workload software. This fundamental disconnect
has played a part in the speculative execution vulnerabilities. Modern software security
research relies on critical assumptions about the behavior of the hardware that have
been false for decades, but software security research is so far removed from modern
microarchitecture research that few researchers saw the risk, and even those who did [95]
radically underestimated the impact.

2.4 Speculative execution

A collection of papers in the early 1970s, including Tjaden and Flynn [118], Flynn
[39], Flynn and Podvin [40], and Riseman and Foster [101], explored the logical limits
of instruction-level parallelism for the hardware of the time, identifying branches and
memory loads as significant obstacles. Within a decade, the tone of publications shifted
from assessing these obstacles as insurmountable, to assessing them as straightforwardly
solved by combining several techniques that remain in common use today, particularly the
speculative techniques of branch prediction and hardware prefetching. Other techniques for
instruction-level parallelism developed around the same time—such as multiple instruction
issue, register renaming, dynamic pipeline scheduling, and out-of-order execution—are
commonly combined with speculation today, but are not inherently speculative.

Lee and Smith [71] and McFarling and Hennessy [80] captured historical perspectives
on branch prediction from the point of view of the mid-1980s. Both surveyed the state
of the art in branch prediction techniques at the time—such as dynamic prediction and
branch target buffers—and critically reviewed previous techniques to speed up conditional
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branches without speculation—such as delayed branches, look-ahead resolution, branch
target prefetching, and multiple instruction streams. Smith [113, 112] captured similar
early perspectives on hardware prefetching in the late 1970s, surveying the impact of
memory access latency for both instruction fetching and memory load instructions, the
limitations of existing implementations of instruction and data prefetching at the time,
and the potential for future performance improvements. One noteworthy characteristic
shared by these papers—and by much of the substantial work on speculative techniques
in the decades that followed—was a focus on metrics of performance with little or no
consideration given to metrics of security.

In 2005, Percival [95] explored the risks inherent in combining speculative execution
with simultaneous multithreading, dynamic pipeline scheduling, multilevel memory caches,
and hardware prefetching, but did not recognize the full extent of the security impact.
Early in 2018, Kocher et al. [66] and Lipp et al. [76] published a set of vulnerabilities
involving speculative execution techniques, respectively called Spectre and Meltdown. A
number of variants on the first reported vulnerabilities soon followed, including Schwarz
et al. [110] on NetSpectre, Van Bulck et al. [119] on Foreshadow or more broadly “L1
Terminal Fault” (L1TF), Weissse et al. [122] on Foreshadow-NG, Stecklina and Prescher
[116] on LazyFP, Chen et al. [23] on SGXPectre, and Islam et al. [59] on Spoiler. A second
round of speculative execution vulnerabilities specifically targeted the mitigations for the
first round of vulnerabilities, including Schwarz et al. [109] on ZombieLoad, van Schaik et
al. [105] on RIDL, Minkin et al. [85] on Fallout, van Schaik et al. [106] on CacheOut, Van
Bulck et al. [120] on Load Value Injection (LVI), and Ragab et al. [98] on CrossTalk. The
overall trend in the variants reported over the years is one of increasingly broad impact.

Studies by Canella et al. [19], He et al [50], and Genkin and Yarom [46] have
systematically reviewed the broad range of speculative execution vulnerabilities, tracing
them to microarchitectural root causes. All speculative execution vulnerabilities take
advantage of the transient nature of speculated instructions, exploiting race conditions
between creating microarchitectural state for a transient instruction and the retirement
actions that would discard that microarchitectural state [19, 50]. Concretely, in the
dynamic pipeline of a modern microarchitecture, the zone of risk for speculative execution
vulnerabilities lies between the point where a functional unit executes an instruction
speculatively, and the point where the commit unit finally retires that instruction as
correctly or incorrectly speculated, as illustrated in Figure 2.2. Spectre-type attacks use
techniques to mistrain the branch predictor or memory disambiguator by feeding it false
history, thus poisoning the microarchitectural state used to make speculative predictions
for branch/return instructions or memory loads, and steering execution toward code paths
and memory locations targeted by the attacker [19, 50]. Meltdown-type attacks exploit
the fact that exceptions are only raised after a faulting instruction is finally committed,
so when a transient instruction triggers an exception, that exception is suspended long
enough for the attack to access microarchitectural state through covert channels [19, 50].
The mechanisms manipulated as part of successful attacks have ranged as broadly as the
L1 data cache [66, 75, 119, 122, 59, 120], uncached memory [75], the Line Fill Buffer (LFB)
[75, 105, 109, 120], the store buffer [85, 120], the Branch Target Buffer (BTB) [66], the
Branch History Buffer (BHB) [36, 52], the Pattern History Table (PHT) [66, 65, 36, 110],
the Return Stack Buffer (RSB) [68, 78], and the memory disambiguator [53, 59]. The
targets of successful attacks have included simple out-of-bounds memory reads [66, 19, 32]
and writes [65], breaking type and memory safety guarantees [52], arbitrary code execution
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Figure 2.2: Zone of risk for speculative execution in a dynamically scheduled pipeline.
Adapted from Patterson and Hennessy [94], Figure 4.69, p. 330.

[65, 66, 68, 78], reading privileged system registers [58], reading FPU and SIMD registers
across processes or virtual machines [116], writing over read-only memory [65], bypassing
memory-protection keys [19, 57], exposing secret data from SGX enclaves [119, 92, 23,
19, 56], and full access to host kernel memory from unprivileged host user space [75, 52,
56], from an unprivileged guest [122], or remotely over the network [110]. Essentially, the
speculative execution vulnerabilities violate the principles of isolation that are the intrinsic
purpose of multitenant infrastructures.

The low-level nature of the speculative execution vulnerabilities can make it challenging
for the average software developer or security practitioner to reason about them. The
diverse assortment of mechanisms and targets in the reported variants appear illogically
disconnected, until you grasp the fundamental principle that all speculated branches and
memory loads leave unprotected microarchitectural state vulnerable to attack. The reported
variants are all practical applications of the same fundamental principle, and the greatest
limitation on future variants is only the prospect that not all leaked microarchitectural
state contains interesting secrets worth targeting in an attack. It is highly likely further
variants will be discovered in the years ahead, because a vulnerability touching every
speculated branch and memory load is so broadly applicable that researching new variants
to report becomes an exercise in exploring which of the many viable targets have interesting
security consequences.

As we will discuss in more detail in Chapter 4, the speculation features that Spectre-
type attacks and Meltdown-type attacks exploit are common to modern major hardware
architectures, such as x86 and ARM, and had already begun to be replicated in RISC-V
implementations before the vulnerabilities were reported. These vulnerabilites are not
bugs in the traditional sense, because the speculation features are functioning as they were
designed. However, they are flaws in the fundamental design of the speculation features as
optimizations to improve instruction-level parallelism, because optimized code running
with speculation does not preserve the semantics and security properties of un-optimized
code running without speculation. The range of proposed and implemented mitigations
limit some of the damage caused by some variants, but the meager protections they offer
carry prohibitive performance penalties, and they do not resolve the inherent logic flaws of
speculative execution as a microarchitectural optimization, which are the true root cause
of the entire class of vulnerabilities [19, 46, 81].

We can never know what might have happened if the security trade-offs of speculative
execution had been fully considered at the same time the performance advantages were
discovered—whether the vulnerabilities might have been exposed earlier, or whether
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modern computer architectures might have evolved down a slightly different path. What
we do know is that we have the ability to re-consider the security trade-offs today, and
make different architectural choices for the future. This dissertation explores the security
and performance trade-offs between three different architectural approaches that partially
or completely eliminate speculative execution, serving as an illustration that fine-grained
control over speculation is both feasible and reasonable to consider in the near-term future
of mainstream modern computer architectures. While it may not be fair to judge past
work by lessons we learned later, it will be fair to judge future work on whether it applies
those lessons or ignores them.
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Chapter 3

Heterogeneous multicores

In Chapter 2, we discussed the fundamental problem that all speculated branches and
memory load instructions leak microarchitectural state, but also observed that only some
of that leaked microarchitectural state has interesting security consequenses. Current
approaches to mitigating the speculative execution vulnerabilties are largely global in
nature, working on the premise that speculative execution is a hidden microarchitectural
optimization, and so the mitigations must also be hidden in the microarchitecture. These
microarchitectural mitigations have no mechanism to differentiate between microarchitec-
tural state that needs to be protected (such as passwords, decrypted secrets, read-only or
protected memory, privileged system registers) and microarchtectural state that doesn’t
need to be protected (vast quantities of numeric, text, or other data with no particular
security significance). The level of detailed semantic information required to identify
security-critical code and data only exists in higher-level languages (and in the minds of
the developers), and is lost through the compilation process down to the lower levels of
ISA instructions and machine code that actually runs on the hardware. If we shift the
paradigm slightly, and view speculation not as a universal optimization hidden in the
microarchitecture, but instead as a high-level trade-off between security and performance,
it opens the door to different approaches.

This chapter explores combining speculative and non-speculative cores in a heteroge-
neous multicore system, as a relatively straightforward way to put fine-grained control
over speculation into the hands of systems software developers. Adding non-speculative
cores makes it possible to run limited sections of code non-speculatively—when the code is
either critical to security or untrusted—while allowing most code to run speculatively for
performance gains. Chapters 4 and 5 explore more experimental approaches to fine-grained
control over speculation, but heterogeneous multicore architectures are in active use today,
and so have the advantage of being more immediately amenable to implementation and
analysis. This chapter explores the feasibility of heterogeneous multicore processors in
the context of a modern cloud/container hardware and software stack and evaluates the
performance of a heterogeneous multicore SoC in RTL simulation.

3.1 Related work

Heterogeneous multicore systems have been an area of increasing interest in systems
research, as well as increasing plausibility in practical applications, since the early 2000s.
While earlier work tended to focus on performance advantages or energy efficiency advan-
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tages of the approach, more recent work has brought attention to security advantages.
As early as 2003, Kumar et al. [69] simulated a model combining cores with the same
instruction set architecture (ISA) but different microarchitectures—some in-order and
some out-of-order—on a single heterogeneous multicore chip, dynamically migrating a
thread between cores to improve performance (on a more powerful core) or energy effi-
ciency (on a less powerful core). In 2010, Li et al. [73] modified the Linux Kernel to
simultaneously support sets of cores with different performance characteristics and slightly
different instruction set architectures (ISAs), dynamically migrating threads between
different kinds of cores to improve performance and throughput. In 2014, Aminot et al.
[7] explored combining cores with different ISAs, some with a minimal set of instructions
and others with added instruction extensions for less frequently used and more energy
hungry features, dynamically migrating code between cores to improve energy efficiency.
In 2017, Birhanu et al. [15] built on the ARM big.LITTLE architecture—a heterogeneous
multicore architecture combining cores with the same ISA but different power and perfor-
mance characteristics—and demonstrated that replacing the Linux Kernel’s Completely
Fair Scheduler (CFS) with their Fastest-Thread-Fastest-Core (FTFC) scheduler, which
dynamically migrated threads between “big” and “little” cores based on CPU utiliza-
tion and capacity, improved power efficiency by 2.22% and improved performance by
52.62%. In 2019, the mainline Linux Kernel accepted the Energy Aware Scheduler (EAS)
[63], specifically for heterogeneous multicore architectures like ARM big.LITTLE, which
similarly takes CPU utilization and capacity into account to improve energy efficiency
while minimizing negative impact on performance. In 2020, Ainsworth and Jones [4]
proposed adding a set of non-speculative special-purpose cores with different ISAs running
specialized kernels, alongside the main speculative general-purpose cores, to improve the
security of small regions of code that are either offloaded to the non-speculative cores or
run as independent validation of results on the main cores. Also in 2020, Le et al. [70]
briefly suggested a heterogeneous multicore system combining non-speculative Rocket
cores [8] with speculative BOOM cores [22, 21] as a mitigation approach for speculative
execution vulnerabilities, without any implementation details.

3.2 Feasibility considerations

Beyond academic research, several factors make the heterogeneous multicore approach
worthwhile to consider as a possibility for the near-term future of mainstream hardware.

3.2.1 Production hardware

In mainstream production hardware, the ARM big.LITTLE architecture has been shipping
in smartphones (such as Samsung and Apple) for several years, and Apple’s M1 family of
SoCs with their own heterogeneous ARM architecture have been shipping in tablets and
laptops for a little over a year. Intel has also been trying out a heterogeneous multicore
approach for x86 architectures, with the Lakefield mobile processors and Alder Lake
desktop processors. These architectures work well in a mobile devices or laptops—where
peak performance is only required sporadically, cores are frequently idle, and switching
low priority workloads to lower power cores can significantly extend battery life. It is less
clear that heterogeneous multicores for server processors are desireable in multitenant
infrastructures—which require consistent peak performance for all workloads, and aim to
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minimise idle cores by sharing the same hardware resources between many workloads for
many tenants—as we will discuss further in Section 3.3.

3.2.2 Prototyping

The University of Berkeley’s Chipyard framework [6] for design, simulation, and implemen-
tation of RISC-V SoCs—originally called the “Rocket Chip Generator” [8]—includes a
collection of default configurations to build SoCs that combine varying numbers of heteroge-
neous cores, including non-speculative Rocket cores and speculative BOOM cores. Balkind
et al. [10] developed the BYOC (“bring your own core”) framework—extending the earlier
OpenPiton framework [11]—explicitly for the purpose of supporting implementations of
heterogeneous multicore systems.

Both Chipyard and BYOC provide open hardware implentations of common shared
components, including memory with coherent caches, accelerators, and standard peripherals
such as UART, block devices, and NICs. Both frameworks support software simulation,
FPGA emulation, and tapeout to silicon as output targets. Chipyard is implemented as a
parameterized hardware generator based on Chisel, with support for integrating Verilog
components directly, while BYOC is implemented in Verilog and SystemVerilog. Both
frameworks have a strong emphasis on enabling verification and validation of designs.
Both frameworks support heterogeneous cores as general-purpose first-class citizens, but
Chipyard focuses on cores running versions of the RISC-V ISA plus extensions, while
BYOC includes implementations of cores using RISC-V, x86, and SPARC ISAs, and
specifically targets combining different ISAs into unified general-purpose heterogeneous
multicore systems.

In addition to Chipyard and BYOC, a number of other more specialized frameworks
build custom multicore systems with varying degrees of heterogeneity. OpenPiton [11] was
originally focused exclusively on the SPARC ISA, but later added the RISC-V ISA in the
form of the 64-bit Ariane core [9]. lowRISC [16] combines RISC-V cores with different
ISA extensions, however the small cores only serve as subordinate “minions”.

The existence of frameworks like Chipyard and BYOC mean that it is currently relatively
straightforward to build custom heterogeneous multicore systems for development and
testing, using either the same ISA with different microarchitectures or different ISAs.

3.2.3 Kernel

The Linux Kernel already supports heterogeneous multicore systems like ARM’s big.LITTLE
architecture with the Energy Aware Scheduler [63] or Capacity Aware Scheduler [62]. A
speculation-centric heterogeneous architecture could use those existing schedulers, with
the non-speculative cores serving the purpose of the lower energy, less powerful “little”
cores, and the speculative cores serving the purpose of the higher energy, more powerful
“big” cores. However, the existing schedulers would only take into account CPU utiliza-
tion, capacity, and energy usage, and would not give any consideration to the security
implications of the differences between the big and little cores.

A new scheduler would be necessary to take full advantage of speculation-centric
heterogeneous multicore systems, perhaps named the “Speculation Aware Scheduler”.
Rather than prioritizing energy efficiency or performance, such a scheduler would prioritize
consistent allocation of tasks within an appropriate “security domain”—a group of CPUs
with the same security characteristics—directly parallel to the “performance domains” that
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the Energy Aware Scheduler uses to group CPUs by performance characteristics [64]. A
region of code that is not safe for speculation must only be scheduled on a non-speculative
core. A region of code that is safe for speculation could always be scheduled on either
a speculative or non-speculative core, so the processing resources of the non-speculative
cores would still be useful for the purpose of energy efficiency, even when they are not
being utilized for the purpose of security.

Developing a new scheduler for a heterogeneous multicore system—with a bifurcation
of cores for security rather than performance—is not a trivial task, but the desired features
are a relatively minor departure from existing schedulers, and not disruptive to the overall
stack of systems software.

3.2.4 Workloads

One level up the system stack from the kernel, modern implementations of virtual machines
and containers make use of kernel security features to improve their own security. Randal
[99] reviewed the evolution of standard features in the Linux Kernel used by modern
virtual machines and containers, such as filesystem, process, IPC, and network namespaces,
resource usage limits, access controls, and system call filtering. These security features
are applied at the process-level, where each virtual machine or container is a process
on the host kernel, and may contain additional processes on the same host kernel or
a guest kernel. To take full advantage of speculation-centric heterogeneous multicore
systems, the container runtime or virtual machine manager need the ability to declare
the security domain of the processes it launches as virtual machines or containers, so the
kernel scheduler can appropriately choose a speculative or non-speculative core for the
process. One simple way to integrate such a feature into the Linux Kernel would be to
add a speculation capability (perhaps CAP SYS SPEC) that grants permission to run on a
speculative core. The Linux Kernel scheduler would then take the speculation capability
into account when choosing where to schedule tasks.

Another alternative, which would not require any modification to the Linux Kernel
scheduler or capabilities, would be to use the Linux Kernel’s existing features for processor
affinity and CPU pinning, to restrict a process or thread so that it will only run on a
specific core or set of cores. The taskset command and sched setaffinity system call
set the CPU affinity of a process, while the glibc functions pthread setaffinity np and
pthread attr setaffinity np set the CPU affinity of a thread. The existing features for
CPU affinity are more manual, and would require defining CPU sets for speculative and
non-speculative cores. But, using existing features would make it easier to evaluate an
unmodified Linux distribution on a heterogeneous multicore system generated by a default
configuration of a framework like Chipyard.

3.3 Evaluation

The greatest advantage of the heterogeneous multicore approach is that it requires less
extensive and less disruptive changes to the hardware and software stack, which makes
production hardware realistically achievable in the short-term future. By comparison,
the demi-speculative ISA approach in Chapter 5 requires substantial changes at the
microarchitecture level and throughout the systems software stack. The non-speculative
standard ISA approach in Chapter 4 only requires changes at the microarchitecture level,
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but developing that non-speculative microarchitecture to production-ready silicon chips
for multitenant infrastructures would be a multi-year effort.

One significant disadvantage of the heterogenous multicore approach is the level of
granularity in control over speculation. The demi-speculative ISA approach in Chapter 5
has instruction-level granularity—speculation can be enabled and disabled at the level of
a single instruction in the instruction stream. The heterogenous multicore approach has
process-level or thread-level granularity—speculation can only be enabled and disabled at
the process or thread level. So, an entire virtual machine or container—or a process or
thread inside a virtual machine or container—may be speculative or non-speculative, but
controling speculation down to the level of a single instruction would be impossible. For
some use cases the granularity of control may not be important, but as long as speculative
pipelining continues to be substantially faster than non-speculative pipelining, there will
be a performance advantage to keeping speculation enabled by default, and only disabling
it for the smallest possible regions of security critical code.

3.3.1 Performance

For performance evaluation, we use a heterogeneous multicore configuration, called Gluon,1

combining a non-speculative Rocket core with a speculative BOOM core as a dual-core
SoC. The Rocket [8] core is an extensible RISC-V in-order scalar core, that uses branch
prediction in the fetch stage, but does not execute instructions speculatively. The BOOM
[131] core is a RISC-V out-of-order superscalar core, based on the Rocket core, with a
high-performance TAGE [111] branch predictor.

The Rocket and BOOM cores and Gluon multicore were built and executed within
the Chipyard framework using the Verlator RTL simulator for a cycle-accurate behavioral
model. Evaluating these cores on a baseline set of benchmarks from the RISC-V project
[100], the results in Figure 3.1 show that the worst-case performance by IPC for a Gluon
multicore is the same as a stand-alone Rocket core. These results are not surprising; when
combining heterogeneous cores we can reasonably expect the performance of each workload
to depend on which core runs it. Workloads allocated to big cores will run faster and
workloads allocated to small cores will run slower.

However, the results do highlight the greatest disadvantage of the heterogenous multi-
core approach in the context of multitenant infrastructures, which is inflexible hardware
resource allocation. When building a large-scale data center, the heterogenous multicore
approach would require deciding in advance exactly how many speculative and non-
speculative cores to manufacture in every machine in the data center. Getting the upfront
allocation decision right involves an impossible level of precision in predicting the kinds of
workloads that customers will want to run, and exactly what percentage of speculative
versus non-speculative execution they will want. Getting the upfront allocation decision
wrong means a massive waste of capital spent on cores that lie idle in production due
to a lack of customer demand. A private cloud might get away with downgrading some
workloads from big cores to small cores, but a public cloud provider selling CPU time in
performance tiers by the hour would quickly lose customers if they arbitrarily downgraded
workloads that the customer paid to deploy on big speculative cores, substituting unused

1There is no particular significance to “Gluon”, we have only adopted names for clarity of exposition.
In the domain of physics, a gluon is an elementary particle that binds quarks together. The name also
sounds vaguely glue-like, which helps make it memorable for“gluing together” heterogenous cores.
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Figure 3.1: Comparing Rocket and BOOM single cores to the Gluon multicore.

small non-speculative cores.
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Chapter 4

Non-speculative superscalar cores

Since the speculative execution vulnerabilities were first reported in 2018, it has often
been said that we must continue producing superscalar processors based on speculative
execution, despite the security risks, because the speculation features are critical for
performance [66, 76, 110, 128, 19, 48, 104, 50]. It is true that stripping away all the
modern features of superscalar processors and stepping back in time to the exact features
of old simple scalar processors would certainly mean returning to the performance levels
of those scalar processors. However, the defining characteristics of modern superscalar
processors are not speculative execution, they are dynamic multiple issue and dynamic
pipeline scheduling [94, p. 328]. In light of the speculative execution vulnerabilities
discovered in recent years, it is a worthwhile exercise to consider the logical limits of
performance for a modern superscalar processor without speculative execution features. In
the contex of multitenant infrastructures, it is also worth considering whether maximizing
instruction-level parallelism for a single stream of instructions—which has always been the
performance goal of speculative execution—is still the right performance goal for systems
that are massively multi-core, multi-threaded, multi-workload, and multi-user.

4.1 Related work

In the early 1970s, before speculative execution became the norm, Riseman and Foster [101]
published a thought experiment on the theoretical limits of performance for conditional
branches. This work posited a machine with an infinite reorder buffer,1 infinite functional
units, infinite registers with register renaming, and the ability to hold an infinite number of
“tentative computational paths” simultaneously for both code paths from each conditional
branch (taken or not taken) and discard incorrect paths when the branch conditions were
resolved. They observed that the maximum speed on such a machine is attained through
the potential to hold an infinite number of conditional branches, which meant that the
maximum possible performance improvement was limited by the size of the reorder buffer.
They calculated that holding j conditional branches in the pipeline required a reorder
buffer large enough to hold least 2j simultaneous code paths. On the hardware of the time,
they considered a reorder buffer with two slots to be a reasonable size, and ten slots as
unusually large, so they rejected the approach as impractical.

1They did not call it a “reorder buffer”, or settle on any consistent way to refer to it, but the most
common were “instruction stack” or “dispatch stack”.
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This is the theoretical context in which speculative execution was embraced. At a
fundamental level, speculative execution is not primarily a performance optimization, it is
primarily a space optimization—using less storage space at various stages of the pipeline
to achieve roughly the same performance. Speculation allows the pipeline to only hold
the instructions for one path of each conditional branch at a time, while ignoring the
other path that it predicts as unlikely. But, the space optimization comes with a heavy
performance cost when the speculation turns out to be wrong and the instructions for
the ignored path have to be fetched, decoded, issued, and executed after the result of the
branch condition is known, as if the speculation never happened.

In 2003, Swanson et al. [117] observed that the performance benefit of speculation
decreases on multithreaded superscalar processors as they increase parallelism through
different elements of the pipeline. In their experiments, a non-speculative pipeline with 8
functional units (combined ALU/LSU) performed 12% better than a speculative pipeline
with 4 functional units. Increasing the size of the L1 data and instruction caches decreased
the performance benefit of speculation from 33% at 16KB, to 24% at 128KB. Increasing the
number of threads on the core reduced the performance benefit of speculation from 300% at
1 thread, to 100% at 4 threads, 24% at 8 threads, and 0% at 16 threads. They observed that
only heavily loaded servers with many workloads would keep such a machine continuously
busy, and so dismissed their own results as not applicable to “the vast majority of cases”
[117, p. 335]. However, their results are uniquely applicable to large-scale multitenant
infrastructures, and the performance impacts they observed are also more relevant to
modern superscalar processors than they were 20 years ago.

4.2 Feasibility considerations

There are many possible ways to implement the microarchitecture of any given instruction
set architecture (ISA). This chapter explores the feasibility of a small but significant
variation on existing microarchitecture implementations, evolving superscalar processor
techniques forward while eliminating speculation. Chapters 3 and 5 explore alternative
approaches that make it possible to disable speculation for specific regions of code, without
eliminating it entirely.

The performance evaluation section of this chapter focuses on the RISC-V architecture,
but the microarchitecture techniques discussed are applicable to other existing hardware
architectures, including x86 or ARM.

4.2.1 Speculative branch instructions

As a foundation, consider a superscalar microarchitecture that is roughly analogous to a
modern x86 processor.2 Like a modern x86, the pipelining approach in this hypothetical
microarchitecture uses both dynamic multiple issue and dynamic pipeline scheduling, with
out-of-order execution. Figure 4.1 illustrates the essential stages of such a microarchitec-
ture: instructions are fetched, placed in a reorder buffer, queued to reservation stations,
dispatched to functional units3 for execution, and then the commit unit retires instructions,

2For a specific example, chapter 4, section 11 of Patterson and Hennessy [94] offers a straightforward
overview of an x86 microarchitecture, based on an Intel Core i7 920.

3Superscalar processors have multiples of each kind of functional unit, including arithmetic logic units
(ALU), floating-point units (FPU), load-store units (LSU), and more.
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either writing or discarding their results. This illustration abstracts away some details of
specific microarchitectures to focus on common elements. For example, microarchitectures
for the complex x86 instruction set typically decode the fetched instructions into micro-
operations, to simplify the issue, execution, and commit stages, but this extra decoding
step is rarely added to microarchitectures for the RISC-V ISA,4 which is fundamentally
designed to be more like the simple micro-operations of x86.
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functional
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functional
unit
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Figure 4.1: Essential components of a dynamically scheduled pipeline. Adapted from
Patterson and Hennessy [94], Figure 4.69, p. 330.

First, consider how speculative branch instructions flow through these essential compo-
nents of a dynamically scheduled pipeline.

4.2.1.1 Fetch

Instruction fetching uses a branch target buffer (BTB) to cache the predicted destination
that is most likely for each conditional branch, based on a recent history of executed
branches. Various microarchitectures may also use a branch history buffer (BHB), branch
history table (BHT), or pattern history table (PHT) in predicting conditional branches,
or a return stack buffer (RSB) in predicting return addresses. Rather than waiting for
the result of evaluating the branch instruction condition, the instruction fetch unit will
continue to fetch instructions along the predicted branch path.

4.2.1.2 Issue

Instruction issue places an entry for each instruction into a reorder buffer, in the order
the instructions were fetched. This stage also performs register renaming, mapping the
architectural registers (the ones visible in the ISA) onto a larger set of physical registers.
Register renaming makes it possible for a sequence of speculatively executed instructions
(or unrolled loop instructions) to effectively operate on a temporary virtual register set,
which may be discarded if the speculatively predicted branch is later determined to be
incorrect. Finally, instruction issue sends instructions to the reservation stations, either
copying the operands immediately (if they are available) or copying them later (if the
operands depend on the results of other instructions).

4The BOOM [131] RISC-V core does decode some instructions into micro-operations, as an optimization
for a special case of data-dependent branches.
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4.2.1.3 Execute

The reservation stations queue up instructions and their operands for multiple functional
units. The reservation stations buffer each instruction until all its operands are ready
and the necessary functional unit is available. The reservation stations dispatch multiple
instructions in parallel to multiple functional units in each clock cycle (known as “multiple
issue”). The functional unit calculates the result of the operation and sends it to the
reorder buffer, as well as to any other reservation stations whose operands depend on the
result. Buffering in the reservation stations means that instructions may not be executed in
the order they were fetched (known as “out-of-order execution”), because the pipeline tries
to avoid hazards and stalls by reordering the instructions (known as “dynamic pipeline
scheduling”) while maintaining the data flow structure of the program.

4.2.1.4 Commit

The commit unit uses the instruction entry in the reorder buffer to hold the results of
the instruction execution until it determines that any speculated results were speculated
correctly, and then marks the instruction entry as complete. The commit unit processes
the reorder buffer in the order the instructions were fetched, so when the instruction at
the head of the reorder buffer is marked as complete, it will perform any pending register
writes or memory stores, and then remove the instruction entry from the reorder buffer.
Alternatively, if the commit unit determines that the speculation was incorrect, it will
discard the result in the reorder buffer, and remove the instruction entry. This approach
of preserving the instruction fetch order in the commit process, called “in-order commit”,
allows the out-of-order pipeline to preserve the appearance of operating like a simple
in-order pipeline. The commit unit only stores results to memory after any speculatively
predicted branches that the store instruction depends on have been determined as correct.

4.2.1.5 Discussion

A number of different real-world microarchitectures follow this general model of speculative
pipelining. For example, Figures 4.2, 4.3, and 4.4 are modern examples of superscalar,
speculative x86, ARM, and RISC-V microarchitectures, and though implementation
details differ, even a cursory examination reveals that they are all designed using the
same fundamental pipeline components from Figure 4.1. The third generation of the
Berkeley RISC-V Out-of-Order Machine (BOOM) in Figure 4.2, shows instruction fetch
near the top center of the figure, branch predictor near the top left, reorder buffer near
the center, feeding into reservation stations labeled “Distributed Scheduler”, which feed
into functional units labeled “EUs”, and finally retirement/commit is annotated on the
reorder buffer near the center. The ARM Neoverse N1 microarchitecture in Figure 4.3,5

shows instruction fetch near the top center of the figure, branch predictor at the top
left, reorder buffer near the center, feeding into reservation stations labled “Issue” and
“Queue”, which feed into functional units labeled “EUs”, and finally retirement/commit is
annotated on the reorder buffer near the center. The Intel Sunny Cove microarchitecture in
Figure 4.4 is a single core within Intel’s Ice Lake server processors,6 and shows instruction

5The AWS Graviton processor custom-built for Amazon EC2 is based on the ARM Neoverse microar-
chitecture.

6The Ice Lake server processors are also branded as 10th generation Xeon processors, while the Ice
Lake client processors are also branded as 10th Generation Core i3, i5, and i7 processors.
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Figure 4.2: RISC-V BOOM microarchitecture. Reprinted from Zhao et al. [131], Figure 1.

fetch near the top center of the figure, branch predictor near the top left, reorder buffer
near the center, with register alias tables near the center left, feeding into reservation
stations labeled “Scheduler”, which feed into the functional units labeled “EUs”, and
finally retirement/commit operates on the reorder buffer near the center right.

The critical security risk in this speculative implementation of branch instructions—and
in any microarchitectures that follow a similar pattern—lies in the first component listed
above, when instruction fetching predicts a particular result for a conditional branch,
and then proceeds to speculatively fetch, issue, and execute instructions on that branch.
Spectre-type attacks use techniques to mistrain the branch prediction by feeding it false
history, thus “poisoning” the branch predictor state of the microarchitecture [19, pp. 4-6].
Meltdown-type attacks exploit the fact that exceptions raised while executing speculatively
are suspended until the faulting instruction is retired by the commit unit, which leaves
a window of opportunity open for access to unauthorized results that should have been
intercepted by the exception [19, pp. 7-10].

4.2.2 Non-speculative branch instructions

One possible way to entirely avoid the security risk of speculative branch instructions is to
replace them with non-speculative branch instructions, which do not participate in branch
prediction. In a traditional, scalar, in-order microarchitecture without branch prediction,
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Figure 4.3: ARM Neoverse N1 microarchitecture. Reprinted from Schor [107].

non-speculative branch instructions stall the pipeline, so the pipeline does not fetch or issue
any instructions from either path of the branch until the branch condition is resolved. A
more nuanced approach to non-speculative branch instructions, in the context of dynamic
pipeline scheduling, is to design the system so that it fetches and issues instructions from
both paths of the branch. The approach is not new or particularly radical—beyond the
theoretical work by Riseman and Foster [101] in the 1970s, the IBM 370/168 and IBM
3033 used similar techniques [71], though the pipelining techniques of the time were a poor
fit for fetching multiple independent instruction streams. In this dissertation, we call this
more nuanced approach to non-speculative branch instructions superpositional pipelining,
by analogy to quantum superpositions, which hold multiple simultaneous states of reality
as potentially true until they reduce to one true state.7

4.2.2.1 Fetch

Instruction fetching for superpositional, non-speculative branch instructions does not read
from or update a branch target buffer, branch history buffer, branch history table, pattern
history table, or return stack buffer. This means both that branch instructions in malicious
code cannot mistrain a branch predictor, and that branch instructions in secure code are
not vulnerable to mistraining attacks.

7The idea is not in any way related to the field of quantum computing, which uses actual physical
superposition and entanglement (as in, quantum mechanics) instead of binary bits to perform computations.
However, the idea is similar to the concept of phi nodes from LLVM’s intermediate representation, as a
resolution point of two variant branches for static single assignment (SSA), and the name “phi” is also a
concept from quantum mechanics.
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Figure 4.4: Intel Sunny Cove microarchitecture. Reprinted from Schor [108].

4.2.2.2 Issue

The superpositional pipeline places instruction entries for both code paths from a con-
ditional branch in the reorder buffer, tagging the entries with a control dependency on
the result of the conditional branch instruction, and renaming registers in each branch
path so the two alternative sets of instructions do not use the same physical registers.8

The pipeline sends the instructions from both branch paths to the reservation stations,
preserving the control dependency tag.

4.2.2.3 Execute

The reservation stations buffer the instructions from both branch paths in the usual way,
however they treat the control dependency tag similarly to a data dependency of waiting
for operands. No instruction from either branch path is dispatched to a functional unit
until the result of the non-speculative conditional branch instruction is known, so there is
no “speculative execution” of any instruction. However, since the instructions from both
conditional branch paths have already been fetched and issued, the instructions on the

8This step is similar enough to the microarchitecture technique of loop unrolling that it might deserve
to be called “branch unrolling”.
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selected branch path can be dispatched to the functional unit on the next clock cycle after
the result of the conditional branch has been calculated. This is far more rapid than if the
entire fetch and issue process was delayed until after the branch condition is evaluated.
The instructions on the rejected branch path are discarded by the reservation stations, and
tagged for discard in the reorder buffer (the instruction entries are effectively re-written as
completed no-op entries).

4.2.2.4 Commit

The commit unit treats instructions from the rejected conditional branch path in the same
way as incorrectly speculated instructions, freeing up the renamed registers and removing
the instruction entry from the reorder buffer. The commit unit still processes the reorder
buffer in the order the instructions were fetched. The instructions from either path on
the conditional branch might have been fetched first, but it ultimately does not matter
which branch path is first in the reorder buffer, since the instructions from the rejected
branch path will all be discarded (in the order they were fetched), and the instructions
from the selected branch path will all be committed (in the order they were fetched). No
instructions on either branch path will ever produce a result until after the result of the
conditional branch is known.

4.2.2.5 Discussion

If we altered Figures 4.2, 4.3, and 4.4 for a superpositional branch pipeline, the primary
visible change would be removing the branch predictor components. The size of some
components of the pipeline—such as the L1 instruction cache, fetch width, fetch buffer,
decode width, reorder buffer, and the reservation stations—would likely need to be
increased to maintain the same instruction throughput despite discarding instructions
on superpositional branch code paths. On the whole, however, superpositional branch
pipelines preserve the microarchitectural state and functionality of the existing superscalar
core design, requiring only minimal changes to the internal behavior of instruction fetch,
issue, execute, and commit.

A superpositional branch pipeline does more work than a speculative branch pipeline,
because it has to fetch and issue instructions from both branch paths, instead of fetching
and issuing instructions from the predicted branch path and ignoring the other branch
path. However, the extra work of the superpositional pipeline does not necessarily imply
slower throughput of instructions with dynamic pipeline scheduling, since the instructions
on the two branch paths are independent, and can be fetched and issued in parallel. A
superpositional branch will always be faster than a mispredicted speculative branch, since
the pipeline can immediately proceed with executing the already issued instructions from
the correct branch path, instead of doing all the work of executing the misspeculated
branch path instructions, discarding them, and then starting the fetch for the correct
branch path instructions after the result of the conditional branch is known. So, it is likely
that a superpositional branch pipeline will tend to perform no better than the best case of
all correctly predicted speculative branches, but will tend to perform better than the worst
case of all mispredicted speculative branches. In practical terms, the relative performance
of a superpositional branch pipeline compared to a speculative branch pipeline will also
depend on the actual nature of the code being run—specifically on whether the code is
dominated by conditional branches that are consistently predictable or change results
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frequently, on whether branches have long or short sequences of instructions on their code
paths, and on how extensively the surrounding instructions outside conditional branch
code paths have a data dependency on the results of the instructions inside conditional
branch code paths.

In Section 4.3.1, we will explore the performance potential of superpositional branch
pipelines further with RTL and FPGA simulation.

4.2.3 Speculative memory load instructions

As we observed in Section 2.4, speculative branch instructions are one microarchitectural
root cause of the speculative execution vulnerabilities, but the other root cause is speculative
memory load instructions. Continuing with the foundation in Section 4.2.1, we consider
a superscalar microarchitecture that is roughly analogous to a modern x86 processor.
Speculative memory load instructions flow through the same essential components of a
dynamically scheduled pipeline as speculative branch instructions.

4.2.3.1 Fetch

Instruction fetching may encounter an ordinary memory load instruction inside a predicted
branch, in which case it will fetch (as well as issue and execute) that memory load
instruction in exactly the same way it speculatively fetches all other instructions on the
predicted branch. Outside of any branch code path, another way that memory load
instructions may be speculatively executed is through a memory disambiguator that
predicts which memory loads do not have a Store To Load (STL) dependency on any
prior store instructions, so a memory load may be executed speculatively and out-of-order,
before prior stores to the same address have been completed.

4.2.3.2 Issue

Instruction issue places an entry for each memory load instruction into the reorder buffer,
performs register renaming, and dispatches the instruction to the reservation stations, the
same as in Section 4.2.1.2.

4.2.3.3 Execute

The reservation stations buffer memory load instructions until their operands are ready
and the necessary functional unit (a load-store unit) is available. The functional unit
executes the memory load operation, and sends the result (the value loaded from memory)
to the instruction entry in the reorder buffer, and also to any other reservation stations
whose operands depend on the result. If the memory load was executed speculatively,
other instructions with a data dependency on the memory load may also be executed
speculatively.

4.2.3.4 Commit

The commit unit uses the instruction entry in the reorder buffer to hold the results of
the memory load instruction (the value loaded from memory), until it determines that
the speculated memory load was speculated correctly. If the commit unit determines
that the speculation was correct, it marks the instruction entry in the reorder buffer
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as complete, performs any pending register writes or memory stores, and removes the
instruction entry from the reorder buffer. If the memory load instruction was speculated
because of branch prediction, the determination of correctness is based on whether the
branch path was predicted correctly, and a misprediction will remove the instruction
entry from the reorder buffer. If the memory load instruction was speculated because
of the memory disambiguator, the determination of correctness is based on whether the
prediction that all prior stores were complete was correct, and a misprediction will discard
the result in the reorder buffer, but will have to execute the memory load operation all
over again to get the correct result, and also re-execute any other instructions that had a
data dependency on the result of the memory load.

4.2.3.5 Discussion

The critical security risk in this speculative implementation of memory load instructions,
and in any microarchitectures that use similar techniques, lies in the third component
listed above, when the load-store unit executes the memory load operation. In modern
architectures, a memory load operation is not a passive read directly from physical memory,
it is a complex operation with cascading side-effects through multiple levels of memory
cache, DRAM buffers, and translation lookaside buffers (TLB), and also has the potential
to trigger exceptions. Some Spectre-type attacks—notably, the speculative store bypass
variant reported by Horn [53]—use techniques to mistrain the memory disambiguator, so it
incorrectly speculates a memory load operation, leaving behind microarchitectural traces
of a stale value that should have been overwritten by a prior store, and then access the
stale value through cache-based side-channels [19, p. 6]. Meltdown-type attacks exploit
the fact that exceptions are only raised after a faulting instruction is finally committed, so
exceptions raised by a memory load instruction9 are suspended long enough for the attack
to access the speculatively loaded value through microarchitectural covert channels [19,
pp. 6-9].

4.2.4 Non-speculative memory load instructions

One possible way to entirely avoid the security risk of speculative memory load instructions
is to replace them with non-speculative memory load instructions. However, while the
limiting factor for branches is parallelism in the pipeline itself, the limiting factor for
memory loads is unavoidable memory latency through the data cache hierarchy and DRAM,
which means that the performance impact of eliminating speculation will be greater for
memory loads than for branches. We also discuss an alternative approach to memory load
instructions in Section 4.2.5, which are partially speculative, but in a restricted way to
avoid leaking microarchitectural traces.

4.2.4.1 Fetch

Instruction fetching for non-speculative memory load instructions does not use speculative
predictions from the memory disambiguator, and does not participate in training the
memory disambiguator for any future speculative predictions. It does, however, use
the memory disambiguator for tracking when all prior stores to the same address have

9Such as a page fault, a general protection fault, or a device-not-available exception.
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been completed—resolving all Store To Load (STL) dependencies for the memory load
instruction—to determine when the memory load is safe to execute non-speculatively.

4.2.4.2 Issue

Non-speculative memory load instructions are fetched, issued with an entry in the reorder
buffer, and dispatched to the reservation stations, the same as in Section 4.2.2.2. Memory
load instructions are tagged with a control dependency by the memory disambiguator, so
they cannot execute before all prior stores to the same address have been completed. If a
memory load instruction is fetched and issued as part of a superpositional branch code
path, it is also tagged with a control dependency on the result of the conditional branch
instruction.

4.2.4.3 Execute

The reservation stations preserve control dependency tags, treating them similarly to the
data dependencies of waiting for operands. They will not dispatch any memory load
instruction to the load-store unit until all prior stores to the same address have been
completed. When the memory load is on a conditional branch code path, the reservation
stations also will not dispatch the memory load instruction to the load-store unit until
the result of the conditional branch is known. Since memory loads are only executed non-
speculatively, any exceptions raised by the memory load instruction are raised immediately,
so there is no period of transient execution to allow access to unauthorized memory load
results through covert side channels.

4.2.4.4 Commit

Since non-speculative memory load instructions are never speculatively executed, the
memory load instruction entry in the reorder buffer is always marked as complete after it
receives a result from the load-store unit.

4.2.4.5 Discussion

Non-speculative memory loads with no hardware prefetching will always be slower than
the best case where a speculative memory load is correctly predicted through the memory
disambiguator. In the worst case of branch misprediction, non-speculative memory loads
avoid the cost of loading a value through multiple layers of cache that will only be
discarded, while still giving the pipeline flexibility to dynamically schedule the memory
load instruction out-of-order (without executing it speculatively). In the worst case of
the memory disambiguator mispredicting, non-speculative memory loads avoid the cost of
re-executing the memory load operation and any other instructions that depended on the
value it loaded.

In the case where a non-speculative memory load is an L1 data cache hit, simple
out-of-order execution without speculation may be able to hide any performance penalty
of the memory load, because it can execute the memory load instruction as soon as any
control dependencies on non-speculative branch instructions or prior stores are completed.
These control dependencies may be resolved and the memory load executed long before
any instructions with a data dependency on the memory load are ready to execute, even
without speculation. In the case where the non-speculative memory load is an L1 data
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cache miss, however, the performance penalty of the memory load may be prohibitive.
Zhao et al. [131] estimate that on the BOOM RISC-V microarchitecture, the performance
penalty for an L1 fetch is only 10 cycles, while the performance penalty for an L3 fetch is
on the order of 50 cycles, which would require a lookahead of 200 instructions on a 4-wide
BOOM pipeline, exceeding the capacity they designed for the reorder buffer.

4.2.5 Speculation buffers for memory load instructions

A hardware prefetching technique prototyped by Gonzalez et al. [48] in 2019 and indepen-
dently by Ainsworth and Jones [3] in 2020 could be combined with superpositional branch
pipelining, to speed up memory loads without leaving microarchitectural traces. The tech-
nique is partially speculative, in that it does read from L1-L3 data cache or DRAM before
any control dependencies (on branch instructions or prior stores) are resolved, however
it holds the result of these memory loads in a special cache (the “L0 speculation buffer”
or “L0 filter cache”), which is only accessible to the memory load instruction, and does
not update the L1-L3 cache in any way until after the memory load instruction is marked
complete by the commit unit. Ainsworth and Jones [3] demonstrated the performance
impact for applying the technique to an 8-wide ARM core in the gem5 simulator was a
4% performance penalty in the SPEC CPU2006 benchmarks and a 5% performance gain
in the Parsec benchmarks.

Further modifying the technique proposed by Gonzalez et al. and Ainsworth and Jones
to more closely fit superpositional pipelines, the speculation buffer could cache multiple
variants of the value, with some variants fetched from data cache or DRAM, and other
variants set by stores to the same memory address. A memory load would only be granted
access to the most recent variant—effectively serving as a tightly restricted form of data
forwarding10—and the memory disambiguator could discard earlier variants as soon as it
determines that all memory loads which should have access to a particular variant (because
they are not blocked by a subsequent store to the same address) have already received
the value. Adding a speculation buffer to a core does require more storage space in the
implementation, but the trade-off is a substantial improvement in isolation within the
microarchitecture.

At a conceptual level—continuing the analogy of superpositions holding multiple states
of reality as potentially true until it can be resolved which one is true—this approach to
memory load instructions using speculation buffers is more “superpositional” than the
non-speculative memory load instructions in Section 4.2.4.

We did not implement either non-speculative memory loads or speculation buffers as
part of the work of this dissertation, but may do so in future work.11

4.2.6 Thread-level parallelism

Modern hardware architectures like the x86 do not limit a single hardware core to running a
single process, instead they use the abstraction of threads to share a core between multiple
tasks. Multithreading is important in the context of desktop and mobile hardware—which
tend to have a relatively small number of cores—but it is absolutely essential in the context

10The technique is similar enough to register renaming that it might even be called “cache renaming”.
11In fact, we started working on an implementation in the gem5 simulator, but gem5’s support for

the RISC-V architecture is new and proved too unstable to deliver reliable results, even without any
modifications to the cache hierarchy or core implementations.
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of multitenant server architectures—where the cloud/container business model depends on
the ability to overcommit CPU resources, running more (mostly inactive) virtual machines
or containers than the machine has cores. Sharing cores yields a substantial performance
gain, because idle compute resources from one thread can be used for another thread.
Even combining all the most advanced techniques of instruction-level parallelism,12 a
single stream of instructions for a single thread will still regularly block on data hazards
or control hazards when there are not enough instructions ready to be dispatched to a
functional unit in a clock cycle to fill all the available functional units, leaving compute
resources idle.

Unfortunately, the performance gain of multithreading compounds the security risk
of speculative execution, because it means that the microarchitectural state exposed by
branches and memory loads is shared between multiple threads, which may be running
completely unrelated code from unrelated virtual machines or containers for unrelated
users. Percival [95] provides an early but comprehensive exploration of the risks inherent in
combining simultaneous multithreading with speculative superscalar pipelining, multilevel
memory caches, and hardware prefetching. Ge et al. [43] more broadly survey the
microarchitecural side-channel attacks enabled by multithreading, multilevel memory
caches, and co-resident virtual machines. Escouteloup et al. [35] propose a collection of
fundamental security principles and recommendations for the design of future hardware in
light of these microarchitectural risks.

Existing techniques to improve the security of multithreading with speculative super-
scalar pipelines—such as tracking a unique thread ID for every instruction through all
stages of the pipeline and segmenting caches and other microarchitectural state per-thread—
are equally effective with non-speculative superpositional pipelines. On each clock cycle,
multiple instructions from multiple different threads may be fetched, entered in the reorder
buffer, issued to the reservation stations, dispatched to functional units, and marked as
complete by the commit unit. Although they share the same microarchitecture hardware,
instructions from one thread must not have access to another thread’s microarchitectural
state. Superpositional pipelines have the potential to provide a stronger guarantee of the
required isolation between threads than speculative pipelines, because they never create
the lingering traces of mispeculated microarchitechural state that are exploited by the
speculative execution vulnerabilities.

4.3 Evaluation

Replacing speculative pipelining with superpositional pipelining makes it possible to
eliminate the speculative execution vulnerabilities, in a way that is invisible outside the
microarchitecture. The approach does not require any changes to the ISA or system
software, so it is not disruptive to existing software stacks, and preserves portability
between different processors with the same ISA, even when one processor has a speculative
microarchitecture and another has a non-speculative microarchitecture.

From a security perspective, the approach in this chapter—a standard ISA with a
non-speculative microarchitecture—has the advantage of entirely eliminating the risk of
speculative execution, while the heterogeneous multicore approach in Chapter 3 or the

12Such as dynamic multiple issue, dynamic pipline scheduling, hardware prefetching, speculative
execution, etc.
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demi-speculative ISA approach in Chapter 5 only provide the ability to partially disable
speculation.

From a performance perspective, the standard ISA approach in this chapter may have
an advantage over the demi-speculative ISA approach in Chapter 5 because it replaces one
form of complexity in the pipeline (speculation) with a different but roughly equivalent
form of complexity (superposition), rather than combining both forms of complexity into
a more complex demi-speculative ISA. The standard ISA approach in this chapter also
has a resource allocation advantage over the heterogeneous multicore approach in Chapter
3, because every core on the server runs an identical standard ISA, so the host retains
full flexibility to control scheduling between cores in response to demand, rather than
restricting certain workloads to specialized non-speculative cores.

One potential disadvantage of the standard ISA approach in this chapter is that
the microarchitecture is exclusively dedicated to non-speculative pipelining, and has no
option to use speculation even in regions of non-critical code where it might be safe to
speculate. For the immediate future, despite the security risks, speculation is a solid bet
for improving performance, and as long as that continues to be true, it is worthwhile to
explore approaches that only partially disable speculation, as in Chapters 3 and 5.
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Figure 4.5: Comparing Rocket and BOOM cores to the Tachyon core.

4.3.1 Performance

For performance evaluation, we use a modified version of the BOOM core, called Tachyon,13

which removes the branch prediction features. The Tachyon core is not a complete
implementation of superpositional branches and memory loads, it is only an out-of-order
core with non-speculative branches, but even this limited implementation provides some
insights into the performance potential of superpositional pipelines. The Rocket, BOOM,
and Tachyon cores were built and run within the Chipyard framework using the Verilator
RTL simulator for a cycle-accurate behavioral model, and using the FireSim [61] simulation
platform for cycle-exact microarchitectural simulation deployed on AWS F1 FPGAs.

13Like Gluon, there is no particular significance to “Tachyon”, we have only adopted names for clarity
of exposition. In the domain of physics, a tachyon is a hypothetical particle that violates the laws of
causality by traveling faster than light. Tachyons have been popular in science fiction since they were
theorized in the 1960s, but most modern physicists will tell you they cannot exist.
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4.3.1.1 RTL simulation

Evaluating the Rocket, BOOM, and Tachyon cores in Verilator on a baseline set of
benchmarks from the RISC-V project [100], the results in Figure 4.5 show that for most
benchmarks the Tachyon core performs worse by IPC than the Rocket core. This result
meets expectations—the Rocket core should perform better than the Tachyon core, because
the Rocket core uses branch prediction as an optimization in the fetch stage, while the
Tachyon core has removed branch prediction features from the BOOM core. The outliers
in Figure 4.5 are the towers and spmv benchmarks, where the Tachyon core performs
better than the Rocket core, though not as well as the BOOM core.
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Figure 4.6: Comparing a series of variations on the Tachyon core.

Digging more deeply into the performance results, Figure 4.6 tightens the focus,
comparing a series of small variations on the Tachyon core with the characteristics
described in Table 4.1. For all benchmarks except towers and spmv, the performance
by IPC remains relatively constant as long as the fetch width is kept at 8, even if the
decode/dispatch width is increased from 3 (in Tachyon.A) to 4 (in Tachyon.B) or 5
(in Tachyon.C), and even if the reorder buffer and fetch buffer are doubled in size (in
Tachyon.A.1 and Tachyon.A.2). The performance by IPC for most of the benchmarks
only begins to improve when the fetch width is increased from 8 to 16 (in Tachyon.D),
which again indicates that the performance bottleneck in these benchmarks lies in the
fetch stage, because the Tachyon cores do not use branch prediction.

Table 4.1: Characteristics of Tachyon variations.

Variant Fetch
Width

Decode
Width

Fetch
Buffer

ROB ALUs FPUs LSUs

Tachyon.A/
BOOM.A

8 3 24 96 3 1 1

Tachyon.A.1 8 3 24 255 3 1 1
Tachyon.A.2 8 3 48 255 3 1 1

continued on next page...
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Table 4.1 – continued from previous page
Variant Fetch

Width
Decode
Width

Fetch
Buffer

ROB ALUs FPUs LSUs

Tachyon.B/
BOOM.B

8 4 32 128 4 2 2

Tachyon.C/
BOOM.C

8 5 40 130 5 2 2

Tachyon.D 16 8 64 256 8 4 2

However, Figure 4.6 raises a question about why the towers and spmv benchmarks
show such different results. These benchmarks perform better by IPC than the Rocket
core (in Figure 4.5), and also generally show a stepwise improvement in performance by
IPC as the decode/dispatch width of the Tachyon core is gradually increased (in Figure
4.6), instead of showing a bottleneck on fetch width. The key to the difference is a
microarchitecture feature shared by the BOOM and Tachyon cores, but not the Rocket
core—an alternative to branch prediction known as short forward branch optimizations.
Zhao et al. [131, p. 4] describe the feature in more detail, but fundamentally the feature
is a simple form of superpositional branching, which is only applied to data-dependent
branches within a short basic block. Instead of holding up the fetch stage waiting for
the result of evaluating the branch condition, the pipeline fetches and decodes all the
instructions that might be executed depending on the result of the branch condition. It
transforms the conditional branch instruction into a micro-op that sets a predicate flag,
and transforms the instructions that depend on the conditional branch into “conditional
execute” micro-ops that determine whether they should execute based on the predicate
flag.

Zhao et al. [131, p. 4] give the following code example to illustrate short forward
branches, in a loop to find the maximum value in an array. The C source code:

int max = 0;

int maxid = -1;

for (i = 0; i > n; i++) {

if (x[i] >= max) {

max = x[i];

maxid = i;

}

}

Is compiled to the RISC-V assembly code:

loop:

lw x2, 0(a0)

bge x1, x2, skip

mv x1, x2

mv a1, t0

skip:

addi a0, a0, 4

addi t0, t0, 0x1

j loop
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But the decoded micro-ops replace the bge (branch if greater than or equal) branch
instruction with a set.bge micro-op and replace the potentially skipped mv instructions
before the skip label with conditionally executed p.mv micro-ops:

loop:

lw x2, 0(a0)

set.bge x1, x2

p.mv x1, x2

p.mv a1, t0

addi a0, a0, 4

addi t0, t0, 0x1

j loop

The specific implementation of short forward branch optimizations in the BOOM
core—writing the result of the branch micro-op to a renamed predicate register file—is
not relevant to the discussion in this chapter. What is relevant, is that the performance
advantages the BOOM core gains for branches using this alternative to branch prediction
persist in the Tachyon core. The compiled RISC-V assembly from the towers and spmv

benchmarks exhibit the behavior of data-dependent branches in short basic blocks, which
triggers the short forward branch optimizations—in nested loops for spmv, and in recursion
for towers.
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Figure 4.7: Equivalent variations on the Tachyon and BOOM cores.

Comparing the Tachyon core variations to equivalent BOOM core variations in Table
4.1, Figure 4.7 shows that the performance of the Tachyon cores improves in proportion
to the performance of the BOOM cores.14 The spmv benchmark consistently shows the
BOOM cores performing about 30% better than the equivalently sized Tachyon core, so
as Section 4.2.2 anticipated, the trade-off for removing the branch predictor is that an
increase in fetch and issue stage features can offset the performance penalty of eliminating

14It was not possible to build a BOOM.D core with a fetch width of 16 and a decode/dispatch width of
8 to compare to the Tachyon.D core, because BOOM’s TAGE branch predictor configures a hard limit
against building such a large core.
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speculation. To put this in perspective, applying the InvisiSpec mitigation alone has
a typical performance penalty of 21% for the Spectre variants and as much as a 72%
performance penalty in general [128], the mitigations for only the L1TF variant have
as much as a 31% performance penalty, and each additional mitigation for each variant
adds its own performance penalty [19, p. 16].15 A more complete implementation of
superpositional branching has the potential to narrow the performance gap between the
Tachyon and BOOM cores, by freeing more branches from the fetch stage bottleneck. The
towers benchmark shows a performance cap at a decode/dispatch width of 4 in both
BOOM.B and Tachyon.B—with no performance improvements for the Boom.C, Tachyon.C,
or Tachyon.D variations—which is a sign of some other bottleneck unrelated to branch
prediction (though possibly related to recursion). It is an open question whether this
trade-off between branch prediction and fetch and issue stage features is viable from a
manufacturing cost perspective—whether the die space saved by dropping the branch
predictor adequately compensates for the die space consumed by the increased fetch width,
decode/dispatch width, fetch buffer, and reorder buffer.

4.3.1.2 FPGA simulation

We evaluated the Rocket, BOOM, and Tachyon cores simulated with FireSim on AWS
F1 FPGAs, using the SPEC CPU2017 intspeed benchmarks. The FireSim simulations
ran at a host frequency of 65MHz on the FPGAs, and modeled the system running at
1GHz, configured as single-core systems with 512KB L2, 4MB simulated L3, and 16GB
DRAM, and with 32KB L1I, 32KB L1D on the BOOM and Tachyon cores, but 16KB
L1I, 16KB L1D on the Rocket core. The SPEC benchmarks were compiled with gcc, with
-O3 optimizations. The SPEC CPU benchmark suite scores are a measure of normalized
execution time, which depends on CPU performance by IPC, but also depends on the
performance of other components in the system such as the cache and memory hierarchy,
number of cores, number of threads, and clock speed. This means that the SPEC CPU
score is a more comprehensive measure of an overall system than IPC alone, but it also
means that direct comparison of the score results is most useful when the systems being
compared are similar.
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Figure 4.8: Rocket, BOOM, and Tachyon on SPEC CPU 2017 benchmarks.

15Large public cloud providers have privately mentioned that the effect of deploying all known and
relevant current mitigations for the speculative execution vulnerablities in production is in the range of a
50% performance penalty, and still cannot fully protect against the vulnerabilities.
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Evaluating the Rocket, BOOM, and Tachyon cores in FPGA simulation on the SPEC
CPU 2017 intspeed benchmarks, the results in Figure 4.8 show a pattern of relative
performance between the cores similar to the RISC-V benchmarks in Figures 4.5 and
4.6, though the Tachyon core tends to perform nearly as well or better than the Rocket
core. The Tachyon.A core performs slightly worse than the Rocket core on the perlbench,
gcc, and exchange2 benchmarks, and better than the Rocket core on the mcf, omnetpp,
xalancbmk, x264, deepsjeng, leela, and xz benchmarks. Compared to the BOOM.A
core, eliminating branch prediction on the Tachyon.A core has about a 30% performance
penalty on the perlbench and omnetpp benchmarks, about a 40% performance penalty
on the gcc, mcf, x264, leela, and xz benchmarks, about a 50% performance penalty on
the xalancbmk, deepsjeng benchmarks, and about a 60% performance penalty on the
exchange2 benchmark.16

4.3.1.3 Compared to x86 and ARM

To place these results in the broader context of multitenant infrastructure deployments,
Figure 4.9 shows that the performance of the BOOM core by IPC is comparable to
production hardware running today. On systems with radically different cache, memory,
core, and clock speed configurations, measuring by IPC gives a better sense of the potential
throughput of the microarchitecture than measuring by normalized execution time, but it
is important to note that the different ISAs affect the IPC results, because the benchmarks
compile down to a different number of instructions for RISC-V, ARM, and x86. The
Graviton1 in Figure 4.9 is a 1st generation AWS Graviton core (based on ARM Cortex
A72), configured as an AWS a1.metal instance with 16 vCPUs (16 threads) at 2.3GHz
and 32GB memory. The Graviton2 is a 2nd generation AWS Graviton core (based on ARM
Neoverse N1), configured as an AWS m6g.metal instance with 64 vCPUs (64 threads) at
2.5GHz and 256GB memory. The Xeon is an Intel Xeon Platinum 8175M, configured as
an AWS m5.metal instance with 96 vCPUs (192 threads) at 3.1GHz and 384GB memory.
The Ryzen is an AMD Ryzen Threadripper 3990X, on a local bare metal machine with 64
cores (128 threads) at 2.9GHz and 256GB memory.17

The BOOM core consistently performs by IPC nearly as well as or better than the
Graviton1, outperforms the Graviton2 in the x264 and xz benchmarks, and outperforms
the Ryzen and Xeon in the deepsjeng, leela, and xz benchmarks.

16The Tachyon.B, Tachyon.C, and Tachyon.D variations were too large and complex for FireSim to
build them for the AWS F1 FPGAs, so we were not able to measure whether increasing the size of fetch
and issue stage components improved performance on the FPGA simulations.

17The Ryzen is a desktop processor rather than a server processor, but we included it as a bare metal
baseline, because the AWS “bare metal” Xeon and Graviton instances actually run in the lightweight
Nitro hypervisor.
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Figure 4.9: BOOM compared to ARM, Intel, and AMD cores.
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Chapter 5

Demi-speculative superscalar cores

The microarchitectural features that make the speculative execution vulnerabilities possible
are integral to the performance potential of modern hardware architectures. Entirely elim-
inating speculative features from an architecture does eliminate the speculative execution
vulnerabilities, but it also degrades performance. Applying the known mitigations for
the speculative execution vulnerabilities also significantly degrades performance. This
performance trade-off is a blunt instrument, all code running on the system is affected.

We question the fundamental assumption in current research and production hardware—
and in decades of hardware architecture design—that speculative features must be always
off or always on, and so mitigations must also apply in a universal fashion. Early systems
like the Intel i860 [67] combined speculative and non-speculative features, and despite
decades of evolution in a different direction, the combination is still possible in modern
hardware architectures. The advantage of such a hardware architecture would be the
ability for systems software to choose between parts of a host or guest operating system
that are so sensitive they must not be speculated, and other parts where performance is
crucial but leaking information is harmless.

This chapter explores adding instructions to the RISC-V instruction set architecture
(ISA), making it possible to selectively disable speculative execution within a single core.
We refer to these systems as demi-speculative because they combine the features of both
speculative and non-speculative microarchitectures.

5.1 Related work

In the late 1980s, the RISC-based Intel i8601 included both speculative and non-speculative
instructions, so the compiler had the power to choose whether to use a primitive form
of speculation for branches and memory loads within a particular region of code [67].
The architecture was not commercially successful, so Intel abandoned it in the 1990s.
However, in light of the speculative execution vulnerabilities discovered in recent years, it
is fascinating to consider where the industry might have ended up today if mainstream
superscalar processors had taken the path of the i860 rather than the x86. We can never
know what might have been, but we can apply a similar approach to modern hardware
architectures and evaluate the results.

Some research into avoiding speculative execution vulnerabilities has taken the approach
of implementing a traditional superscalar architecture with the standard RISC-V ISA

1Also known as the 80860.
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and experimenting with minor variations in the microarchitecture. The Berkeley Out-of-
Order Machine (BOOM) [22, 21] is a superscalar out-of-order RISC-V core, designed as a
compatible substitute for the 5-stage in-order scalar pipelined RISC-V core Rocket [8],
within the Chipyard [6] implementation framework for RISC-V custom SoCs. The third
version of the BOOM core [131] offers more advanced speculation features, including an
instruction fetch unit based on the TAGE branch predictor algorithm and a load-store
unit that supports multiple loads per cycle. Gonzalez et al. [48] replicated the Spectre [66]
bounds check bypass and branch target injection attacks on an extended RISC-V BOOM
processor. The further addition of an L0 speculation buffer mitigated the attacks, by
holding speculative load data in the buffer, to be flushed if the speculative load resolves as
misspeculated, or written to the L1 cache when the speculative load commits.

Some researchers have also proposed minor variations on the RISC-V ISA. Yu et al.
[129] prototyped a RISC-V extension on the BOOM core, to track confidentiality labels
on data against security-guarantees of instructions, as a mitigation for microarchitecural
side-channel attacks. Escouteloup et al. [35] proposed an extension to the RISC-V
ISA (specifically the RV32I base ISA) introducing a concept of confidential registers
and hardware security contexts to express security boundaries, as a mitigation for some
side-channel attacks. Wistoff et al. [127] proposed adding a fence instruction to the
RISC-V Ariane core, to flush microarchitectural state when switching between security
contexts, based on earlier research [43, 51, 45, 44] into time protection mechanisms against
side-channel attacks.

5.2 Feasibility considerations

As in Chapters 3 and 4, the ideas discussed in this chapter are applicable to other
hardware architectures, such as x86 and ARM. But, the modular nature of the RISC-V
ISA—consisting of a base set of integer instructions and a collection of standard and
non-standard instruction extensions for more complex features—does make it a particularly
good target for experimenting with combining speculative and non-speculative instructions
in a single core.

5.2.1 RISC-V ISA extensions

Within the RISC-V 32-bit base integer instruction set (RV32I), only a relatively small
number of instructions are relevant for speculative execution: load operations access mem-
ory, and conditional branch instructions create decision points in the control flow. An ISA
extension to support both speculative and non-speculative features would add a small num-
ber of duplicate instructions, so each speculative instruction would have a non-speculative
variant. Following the RISC-V naming convention specified for non-standard extensions,
we call this hypothetical extension “Xdemispec”. Table 5.1 lists the relevant RV32I base
instructions and their variants in the extension.2 Throughout this chapter, we will describe
the base instructions as speculative and the Xdemispec extension as non-speculative, for
example the beq (branch if equal) instruction is speculative, while the xbeq instruction in
the Xdemispec extension is non-speculative. The concept could be implemented equally

2There is no particular significance in the use of “X” as the first letter in the names of the variant
instructions, it was chosen merely because the character is rarely used, relatively distinctive, and akin to
the “X” prefix for non-standard extensions.
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well with non-speculative base instructions, but a speculative base means that unmodified
compilers get the performance advantages of the speculative instructions, while modified
compilers can access the security benefits of disabling speculation for limited sections of
code.

Table 5.1: Demi-speculative extensions for RISC-V 32-bit
base integer instruction set

Description RV32I Base RV32I Xdemispec
Load Byte (8-bit) LB rd,rs,imm XLB rd,rs,imm

Load Halfword (16-bit) LH rd,rs,imm XLH rd,rs,imm

Load Word (32-bit) LW rd,rs,imm XLW rd,rs,imm

Load Byte Unsigned LBU rd,rs,imm XLBU rd,rs,imm

Load Halfword Unsigned LHU rd,rs,imm XLHU rd,rs,imm

Branch Equal BEQ rs1,rs2,imm XBEQ rs1,rs2,imm

Branch Not Equal BNE rs1,rs2,imm XBNE rs1,rs2,imm

Branch Less-Than BLT rs1,rs2,imm XBLT rs1,rs2,imm

Branch Greater-Than or Equal BGE rs1,rs2,imm XBGE rs1,rs2,imm

Branch Less-Than Unsigned BLTU rs1,rs2,imm XBLTU rs1,rs2,imm

Branch Greater-Than or Equal Unsigned BGEU rs1,rs2,imm XBGEU rs1,rs2,imm

Memory store operations (sb, sh, sw, and sd) participate in speculative execution,
but only to the extent that they must wait until any speculative results they depend
on have been finally committed. Since the Xdemispec extension makes it possible to
mix speculative and non-speculative instructions, it would not be safe to provide the
user with alternative store instructions that ignore speculation, since the user might
incorrectly use the non-speculative instruction to store results that actually depend on
some speculatively executed code. Instead, the microarchitecture implementation of the
store instructions must be modified to recognize that the Xdemispec load and branch
instructions do not participate in speculative execution, which effectively means they
always commit immediately after the execution stage.

In RISC-V, computational instructions—such as math or logic operations—only operate
on registers and immediates, so while they might benefit from a speculative memory fetch
or might run as part of a speculative branch prediction, they are inherently neutral to
speculation, and do not require variants in the Xdemispec extension.3

The RISC-V 64-bit base integer instruction set (RV64I) adds two instructions that are
relevant to speculation. Table 5.2 shows variants for these instructions in the Xdemispec
extension.

3It is worth noting that the x86 instruction set defines computational instructions that operate directly
on memory locations, so a similar extension for x86 would require many more instruction variants than
RISC-V.

46



Table 5.2: Demi-speculative extensions for RISC-V 64-bit
base integer instruction set

Description RV64I Base RV64I Xdemispec
Load Doubleword (64-bit) LD rd,rs,imm XLD rd,rs,imm

Load Word Unsigned LWU rd,rs,imm XLWU rd,rs,imm

Beyond the base integer instruction sets, RISC-V defines a combination of standard
extensions for general-purpose computing, including multiplication and division instruc-
tions (extension M), atomic instructions (A), single-precision (F) and double-precision
(D) floating point instructions, control and status register instructions (Zicsr), and the
instruction-fetch fence instruction (Zifencei). This combination of integer base and stan-
dard extensions is abbreviated from “IMAFDZicsr Zifencei” to simply “G”, so the 32-bit
and 64-bit general-purpose combined instruction sets can be clearly referred to as RV32G
and RV64G.

RV64G is the typical target for RISC-V hardware capable of running a full Linux
operating system, so it is reasonable for the Xdemispec extension to consider the full set
of RV64G instructions. The multiplication and division extension (M) and floating point
extensions (F and D) do not add any instructions relevant to speculation, and so do not
require variants in the Xdemispec extension. The atomic extension (A) adds load and store
operations for memory, however the instructions read, modify, and write memory within
a single operation (for syncronization between multiple RISC-V hardware threads), and
so will always be non-speculative. The control and status register extension (Zicsr) adds
loads and stores of the Control/Status Register (CSR) set, however CSR instructions are
also only executed non-speculatively. The instruction-fetch fence extension (Zifencei) may
require changes at the microarchitecture level to handle the combination of speculative and
non-speculative instructions, but does not require the addition of any variant instructions
for the Xdemispec extension.

In summary, the Xdemispec extension adds a total of only 13 new instructions to
the RV64G general-purpose instruction set. This increase in the footprint of the ISA
is tolerably small, when weighed against the benefit of providing user-level control over
speculative execution.

5.2.2 Microarchitecture

One crucial challenge for implementing demi-speculative features at the instruction level
lies in the microarchitecture, specifically in implementing a pipeline capable of efficiently
executing both speculative and non-speculative instructions. As in Chapter 4, consider
a foundation of a superscalar microarchitecture that is roughly analogous to a modern
x86 processor, which uses dynamic multiple issue and dynamic pipeline scheduling, with
out-of-order execution. There are many possible ways to implement the microarchitecture
of both speculative and non-speculative features, but some are more compatible than
others. Specifically, combining a modern superscalar microarchitecture with an old scalar
microarchitecture on a single core would effectively require including two completely
different instruction pipelines each with their own microarchitectural state. On the
other hand, the speculative and superpositional microarchitectures described in Chapter
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4 are highly compatible—they use identical instruction pipelines and nearly identical
microarchitectural state, with only minor differences in which instructions are fetched and
when instructions are executed. The next two sections describe a combination of speculative
and superpositional pipelining as one reasonable way to implement a microarchitecture
supporting the Xdemispec extension.

5.2.2.1 Branch instructions

In the demi-speculative ISA, ordinary branch instructions are speculative, while the non-
speculative branch instructions in the Xdemispec extension do not participate in branch
prediction.

Fetch: Instruction fetching for the non-speculative branch instructions does not read
from or update the branch target buffer, branch history buffer, branch history table,
pattern history table, or return stack buffer, even though the microarchitecture has these
features in the hardware and uses them for the speculative branch instructions. This
means both that non-speculative branch instructions will never use mistrained predictions
from other speculative branch instructions (so they might be used in regions of code that
are critical to security), and also that non-speculative branch instructions cannot be used
to mistrain the branch predictor (so they might be substituted for speculative branch
instructions in regions of code that are untrusted).

Issue: As in Section 4.2.2.2, the pipeline for non-speculative branch instructions would
fetch instruction entries for both branch paths and place them in the reorder buffer,
tagging the entries with a control dependency on the result of the conditional branch
instruction, and renaming registers in each branch path so the two branch code paths do
not use the same physical registers. Because the reorder buffer entries for non-speculative
branch instructions are tagged with a special control dependency, they do not interfere
with ordinary speculative branch instructions, which proceed through the pipeline in the
normal speculative way. For non-speculative branches, the pipeline sends instructions from
both branch paths to the reservation stations, preserving the control dependency tag. For
speculative branches, the pipeline only sends instructions from the predicted branch path
to the reservation stations, but without the control dependency tag.

Execute: The reservation stations buffer all instructions issued from either speculative or
non-speculative branch paths in the usual way, however they treat the control dependency
tag on non-speculative branch instructions as similar to a data dependency of waiting for
operands. Instructions from a speculated branch path are dispatched to a functional unit
to be executed immediately. However, no instructions from either non-speculative branch
path are dispatched to a functional unit until the result of the non-speculative conditional
branch instruction is known, so there is no speculative execution of any instruction for the
non-speculative branches.

Commit: The commit unit treats the instructions from the rejected non-speculative
conditional branch path in the same way as incorrectly speculated instructions, it frees
up the renamed registers and removes the instruction entries from the reorder buffer. As
in Sections 4.2.1.4 and 4.2.2.4, the commit unit processes results from the reorder buffer
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for all instructions—speculative or non-speculative—in the order the instructions were
fetched.

As discussed in Section 4.2.2, the size of several fetch and issue components need to be
increased to maintain the same instruction throughput despite discarding instructions on
non-speculative branch paths.

5.2.2.2 Memory load instructions

Continuing to consider a superscalar microarchitecture that is roughly analogous to a
modern x86 processor, the demi-speculative RISC-V microarchitecture may speculatively
execute ordinary memory load instructions. Ordinary memory load instructions within a
non-speculative branch path behave like any other instruction to the extent that they will
be fetched and issued, but will not be speculatively executed as part of the branch. However
ordinary memory loads could still be set up for speculative execution by the memory
disambiguator. There is a viable use case for permitting the memory disambiguator to
speculate memory loads within a non-speculative branch path,4 so in this hypothetical
demi-speculative microarchitecture only the non-speculative memory load instructions in
the Xdemispec extension fully avoid speculative execution.

Fetch: Instruction fetching for speculative memory load instructions uses speculative
predictions from the memory disambiguator, and participates in training the memory
disambiguator for future speculative predictions. Non-speculative memory load instructions
do not use the memory disambiguator for predictions, however, they do use the memory
disambiguator for tracking when all prior stores to the same address have been completed—
resolving all Store To Load (STL) dependencies for the memory load instruction—to
determine when the memory load is ready to execute non-speculatively.

Issue: Both speculative and non-speculative memory load instructions are fetched, issued
with an entry in the reorder buffer, and dispatched to the reservation stations, the same as
in Sections 4.2.3.2 and 4.2.4.2. Speculative memory load instructions proceed through the
reorder buffer to the reservation stations in the normal speculative way. Non-speculative
memory load instructions that are fetched and issued as part of a non-speculative branch
path are tagged with a control dependency on the result of the non-speculative conditional
branch instruction. Non-speculative memory load instructions outside of a non-speculative
branch path are tagged with a control dependency by the memory disambiguator, so they
cannot execute before all prior stores to the same address have been completed.

Execute: The reservation stations preserve the control dependency tag on non-speculative
memory load instructions, treating it similarly to a data dependency of waiting for operands.
They will not dispatch a non-speculative memory load instruction to the load-store unit
until all prior stores to the same address have been completed and/or the result of the
non-speculative conditional branch is known. Since the result of the non-speculative condi-
tional branch instruction is known before any instructions on the non-speculative branch
path execute, any exceptions raised by the non-speculative memory load instruction are

4As usual, this is primarily a trade-off between security and performance.
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raised immediately, so there is no period of transient execution to allow access to incorrect
memory loads through covert side channels. Speculative memory load instructions proceed
through the reservation stations, through the functional units, and on to the commit unit
in the normal speculative way.

Commit: Since non-speculative memory load instructions are never speculatively exe-
cuted, the commit unit always marks the memory load instruction entry in the reorder
buffer as complete after it receives a result from the load-store unit. For speculative
memory load instructions, the commit unit determines whether the speculated memory
load instruction was speculated correctly, and if so, marks the instruction entry in the
reorder buffer as complete, performs any pending register writes or memory stores, and
removes the instruction entry from the reorder buffer. If the commit unit determines
the speculation was incorrect, it will discard the result of the speculated memory load,
and either remove the memory load instruction entry from the reorder buffer (if the
instruction was on a misspeculated branch path), or else execute the memory load all over
again together with any instructions that depended on its result (if the instruction was
misspeculated by the memory disambiguator).

As discussed in Section 4.2.5, the performance of non-speculative memory loads can
substantially benefit from hardware prefetching, but the feature does need to be designed
carefully to avoid leaving microarchitectural traces. Speculative memory loads also benefit
from hardware prefetching that avoids leaving microarchitectural traces, so choosing
hardware prefetching techniques such as those in Section 4.2.5 are a better choice overall
than current hardware prefetching approaches that naively update the L1-L3 cache with
results while speculating memory loads.

5.2.3 High-level language modifications

If demi-speculative features were implemented at the instruction level, the challenge for
high-level languages would be how to expose the concept of choosing between speculative
and non-speculative instructions, in a way that is meaningful to programmers and relatively
easy to use. An extended ISA would require modifying the compiler to output the added
instructions. Such a change involves modifying the definition of the source high-level
language, adding a way for programmers to indicate which sections of code should be
non-speculative, modifying the parser to recognize the new syntax, modifying the semantic
analysis phase to retain information about regions of code tagged as non-speculative, and
modifying the generator to select different instructions within non-speculative regions of
code. There are many different ways such changes could be implemented in a compiler, this
section and Section 5.2.4 explore one possible example using Rust as the high-level language
and LLVM as the compiler toolchain, to demonstrate the feasibility of the approach.

In Rust, the unsafe keyword instructs the Rust compiler to alter a few small but
significant low-level behaviors related to memory safety. Without delving into the details
of how unsafe functions in Rust, what is relevant here is that Rust programmers have
become familiar with the concept of unsafe as a strategically placed keyword that alters
the output of the compiler.5 The unsafe keyword is allowed in three positions in the

5Other programming languages have keywords to alter compiler behavior, such as volatile in C,
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syntax of Rust: as a block, on a function or method definition, and on a trait declaration or
implementation. We posit a new keyword named nospec, allowed in all the same syntactic
positions as the unsafe keyword.

When used as a block, the nospec keyword indicates that all code within the body of
the block should be compiled using non-speculative instructions:

nospec {

// non-speculative code here

}

Conditional branches within the nospec block will not run speculatively, which means
no code that depends on the branch instruction will execute until the condition is evaluated,
no trace will be left in the cache of falsely predicted results, and no trace of the branch will
be left in the branch predictor, so the code cannot influence any future branch predictions.
Memory accesses within the nospec block will not perform speculative memory fetching,
which means they will leave no trace of misspeculated loads in the cache to be exposed by
side-channel attacks.

When used on a function or method definition, the nospec keyword indicates that all
code within the body of the function should be compiled using non-speculative instructions.
A function defined as a nospec function can only be called from within a nospec block, as
a way of requiring the programmer to explicitly take responsibility for the altered behavior.
In the code example below, the leave no trace function is defined as non-speculative,
and can only be called from within a nospec block:

nospec fn leave_no_trace() {}

nospec {

leave_no_trace();

}

When used on a trait definition or implementation, the nospec keyword indicates that
all code within the body of the trait should be compiled using non-speculative instructions.
In the code example below, the LeaveNoTrace trait is defined as non-speculative, and
later implemented for the Password type:

nospec trait LeaveNoTrace {

// method signatures

}

nospec impl LeaveNoTrace for Password {

// method implementations

}

C++, C#, and Java, but Rust’s unsafe is a cleaner example of high-level language syntax for clearly
delineated blocks of code.
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5.2.4 Compiler toolchain modifications

Taking a step back from the high-level language to the compiler toolchain that supports
it, the challenge at this layer is how to capture and preserve information about the
nospec feature through all compilation phases, in order to finally output non-speculative
instructions.

LLVM is a collection of libraries and tools, used for both static and dynamic compilation
of programming languages. The compiler for the Rust programming language uses LLVM
for code generation: one of the later stages of Rust compilation produces output in LLVM
Intermediate Representation (IR)—a kind of heavily annotated assembly language—which
LLVM takes as input to run optimization passes and generate machine code for the target
architecture as the final output. LLVM is designed to be extensible and allow for custom
behavior at every stage of the compilation process, including code generation for a wide
variety of hardware architectures and even non-traditional code generation targets such as
WebAssembly.

At the highest level of LLVM IR produced by the Rust compiler, LLVM has a built-in
system for attaching metadata to annotate the IR instruction stream with additional
information. The most common use of the metadata feature in LLVM is the !dbg

identifier to capture source-level debug information in a standard form, and preserve that
information through any optimization or tranformation passes, all the way through to the
final generated machine code. It would be possible to add a !nospec metadata identifier
to LLVM, and then modify the Rust compiler to annotate IR instructions, functions, and
modules with the metadata identifier, corresponding to the high-level language code blocks,
functions, and traits defined with the nospec keyword. The following code example in
LLVM IR is a conditional branch, which branches to the destination label true when the
condition evaluates as true, and to the label false when the condition evaluates as false.
Normally, LLVM would compile this conditional branch as a speculative branch instruction
in the standard ISA, but adding the metadata identifier !nospec to this conditional branch
would tell LLVM to compile it as a non-speculative branch instruction in the extended
ISA.

br i1 %cond, label %true, label %false, !nospec !0

At the lowest level of LLVM’s code generation, the extended demi-speculative RISC-
V ISA would need to be defined as a separate target, though it would inherit almost
all features from the existing standard RISC-V target. Each instruction added in the
demi-speculative RISC-V extension in Section 5.2.1 would require adding an entry in the
TargetInstrInfo class for the target to describe the instruction.

Optimization or transformation passes in LLVM discard any metadata annotation they
are unable to recognize, so each pass to be used in the compilation of the LLVM IR produced
by the Rust compiler would need to be modified to preserve the custom !nospec metadata
identifier. The instruction selection pass would also need to be modified, to recognize the
metadata identifier, and use it to select the extended RISC-V demi-speculative instructions
instead of the standard RISC-V instructions.

Overall, the modifications to LLVM required to support an extended RISC-V ISA are
not trivial, but they do lie within the realm of custom compiler features that LLVM was
designed to support.
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5.3 Evaluation

While the ability to disable speculation for small regions of code is a security advantage
over speculating all code, implementing demi-speculative features at the ISA level is not
radically more secure than the heterogeneous muilticore alternative outlined in Chapter 3
and is less secure than entirely eliminating speculation with the standard ISA approach in
Chapter 4. Taking full advantage of the extended RISC-V ISA requires a web of changes
through multiple layers of systems software. Such changes are feasible, but also disruptive,
in a way that may initially make it more difficult to validate the security of the overall
system.

From a performance perspective, the demi-speculative ISA approach has an advantage
over the heterogeneous multicore approach in Chapter 3, in that it avoids the overhead
of inter-process communication between speculative and non-speculative regions of code.
However, this advantage is balanced against the potential performance loss of a more
complex microarchitecture pipeline combining speculative and non-speculative features.

From a portability perspective for multitenant infrastructures such as cloud and
containters, the disadvantage of the demi-speculative ISA approach is that host and guest
operating systems and workloads would be highly dependent on the low-level details of the
extended ISA. A host operating system or guest image compiled for a demi-speculative
RISC-V ISA on one server is not portable to a standard RISC-V ISA on another server,
though the source code could be portable as long as the compiler ignores any demi-
speculative annotations when compiling for targets that do not support them. On the
other hand, the demi-speculative ISA approach also has an advantage in resource allocation
over the heterogeneous multicore approach—because every core is identical and able to
run in a non-speculative mode, the host is free to allocate workloads to any core. With
the heterogeneous multicore approach in Chapter 3, the host must allocate speculative
workloads to speculative cores, and non-speculative workloads to non-speculative cores.
Since the hardware for a heterogeneous multicore is manufactured with a fixed number of
speculative and non-speculative cores, there is no flexibility to change that allocation in
response to demand. Across a data center with thousands or hundreds of thousands of
servers, an imbalance in the utilization of the speculative and non-speculative cores could
result in a substantial performance loss through unused resources and wasted capacity.

Ultimately, the heterogenous multicore approach is easier to deliver in the short-term
future, but the demi-speculative ISA approach and the standard ISA approach with
superpositional pipelines are worth further research in the longer-term.

5.3.1 Performance

For performance evaluation, we use a modified version of the BOOM core, called Dyon.6

Similar to the way performance on the Gluon multicore depends heavily on whether
a workload runs on a speculative core or a non-speculative core, performance on the
Dyon core depends heavily on whether a workload has been compiled with speculative
instructions or non-speculative instructions. In this limited prototype, a benchmark with
all speculative branch instructions has the same performance by IPC on a Dyon core as on

6Like Gluon and Tachyon, there is no particular significance to “Dyon”, we have only adopted names
for clarity of exposition. In the domain of physics, a dyon is a hypothetical particle that has both electric
and magnetic charges. The word also has the same Latin root as “dyad”, meaning a thing composed of
two distinct parts.
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a BOOM core, and a benchmark with all non-speculative branch instructions has the same
performance by IPC on a Dyon core as on a Tachyon core. A more interesting question
is what happens when a workload mixes speculative and non-speculative instructions.
To model the effects of mixed workloads without changing the compiler toolchain or
recompiling benchmarks, we built a series of variations on the Dyon core, shown in Table
5.3, where instead of making the branch instructions in the standard ISA all speculative
or non-speculative, we made some branch instructions in the standard ISA speculative
and some non-speculative. The Dyon cores were built and executed within the Chipyard
framework using the Verilator RTL simulator for a cycle-accurate behavioral model, and
using the FireSim [61] simulation platform for cycle-exact microarchitectural simulation
deployed on AWS F1 FPGAs.

Table 5.3: Characteristics of Dyon variations.

Variant Speculative Non-Speculative
Dyon.A BGE all other branches
Dyon.B BEQ all other branches
Dyon.C all other branches BEQ
Dyon.D all other branches BGE

5.3.1.1 RTL simulation

Evaluating the Dyon core variations in Table 5.3 on a baseline set of benchmarks from the
RISC-V project [100], the results in Figure 5.1 show that performance of the benchmarks
by IPC varies depending on the relative proportion of speculative to non-speculative
branch instructions. In this particular set of benchmarks, bge branch instructions (branch
if greater or equal) are relatively rare, so for the Dyon.A variant—which only speculates
bge branch instructions and runs all other branch instructions as non-speculative—the
performance by IPC is only slightly better than the Tachyon core. But, for the Dyon.D
variant—which speculates all branch instructions except bge—the performance by IPC
for most of the benchmarks is only slightly worse than the BOOM core. In three of
the benchmarks (multiply, spmv, and vvadd) the performance on the Dyon.D variant is
slightly better than the BOOM core, which could be explained if some bge branches were
misspeculated on BOOM, so that the non-speculative bge ends up performing better by
avoiding the hit of misspeculation.

In contrast, the beq branch instructions (branch if equal) are far more common in the
dhrystone and towers benchmarks in Figure 5.1, so the performance of these benchmarks
on the Dyon.B variant—which only speculates beq branch instructions—is substantially
better than the Tachyon core in the dhrystone benchmark, and nearly as good as the
BOOM core in the towers benchmark. And, for the Dyon.C variant—which speculates
all branch instructions except beq—the performance by IPC is substantially worse than
the BOOM core on the towers benchmark and almost as bad as the Tachyon core in the
dhrystone benchmark. In the other benchmarks, the beq branch instruction is rare, so
the performance on the Dyon.B variant is about the same as the Dyon.A variant, and the
performance on the Dyon.C variant is about the same as the Dyon.D variant.
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Figure 5.1: Comparing a series of variations on the Dyon core.

These results indicate that while workloads with mixed speculative and non-speculative
branch instructions do pay a performance penalty, they do so in proportion to their
use non-speculative instructions. Workloads that make only light use of non-speculative
instructions, suffer only minor loss of performance. This effect of gradually degraded
performance sets the demi-speculative ISA approach apart from most current approaches
to mitigating the speculative execution vulnerabilities, because it puts the systems software
developer in control of when to choose speculation for performance, and when to trade
some performance for the security of eliminating speculation.

5.3.1.2 FPGA simulation

As in Section 4.3.1.2, we evaluated the Rocket, BOOM, and Dyon cores simulated with
FireSim on AWS F1 FPGAs, using the SPEC CPU2017 intspeed benchmarks. The FireSim
simulations ran at a host frequency of 65MHz on the FPGAs, and modeled the system
running at 1GHz, configured as single-core systems with 512KB L2, 4MB simulated L3,
and 16GB DRAM, and with 32KB L1I, 32KB L1D on the BOOM and Dyon cores, but
16KB L1I, 16KB L1D on the Rocket core. The SPEC benchmarks were compiled with
gcc, with -O3 optimizations.

Evaluating the Rocket, BOOM, and Dyon cores in FPGA simulation on the SPEC
CPU2017 intspeed benchmarks, the results in Figure 5.2 show a pattern of relative perfor-
mance between the cores similar to the RISC-V benchmarks in Figure 5.1—performance
of the benchmarks by IPC varies depending on the relative proportion of speculative to
non-speculative branch instructions. The performance of all benchmarks on the Dyon.B
variant—which only speculates beq branch instructions—is better than the Rocket core
and at least slightly better than the Tachyon core. The performance of most benchmarks on
the Dyon.C variant—which speculates all branch instructions except beq—is much closer
to the performance of the BOOM core. Only one benchmark (gcc) performs better on the
Dyon.B variant than the Dyon.C variant, because the beq branch instruction occurs so
frequently in the compiled benchmark that speculating that one type of branch instruction
has a greater performance impact than speculating all other branch instructions.
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Figure 5.2: Comparing a series of variations on the Dyon core.
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Chapter 6

Conclusions

The discovery of the speculative execution vulnerabilities in 2018 created a shock wave
in hardware and software security research that continues to unfold. New variants on
the vulnerabilities are published regularly, usually with a collection of mitigations for the
symptoms of each variant. Some mitigations are adopted by major hardware vendors and
deployed by public providers of multitenant infrastructures. Many proposed mitigations
never see significant adoption because the performance penalty of the specific mitigation
is too high, or because the performance penalty of deploying all the relevant mitigations is
so high that hardware vendors and infrastructure providers choose to adopt only a subset
of mitigations with the greatest impact for their particular target use case. The current
mitigations work around the symptoms of specific variants, but they do not address the
root cause of the speculative execution vulnerabilities, which is a fundamental design flaw
in the speculation features of modern superscalar hardware architectures. If we continue
this way, we can look forward to many generations of hardware debilitated by performance
penalties from increasing layers of mitigations as new variants are discovered, and yet still
vulnerable to variants that have yet to be discovered, or variants that have been discovered
by malicious parties and have yet to be reported or mitigated. There is no real resolution
to the speculative execution vulnerabilities on the horizon.

This dissertation has sought to demonstrate the potential of research avenues that
fundamentally rethink the role of speculation in modern hardware architectures. We have
explored whether speculation could be partially or completely eliminated, and the security
and performance implications of doing so.

Chapter 2 established the background for this dissertation. We described the unique
requirements that multitenant infrastructure environments have for hardware and software
security, and how key concepts of multitenant infrastructures developed over time. We
then outlined how the speculative execution vulnerabilities undermine crucial assumptions
about hardware security that researchers and the industry have been making for decades.

Chapter 3 explored the potential for heterogeneous multicore architectures that combine
speculative and non-speculative cores. Gluon-type multicores make it possible run a process
or thread as non-speculative, but cannot provide any tighter level of control over speculation.
Performance is determined by which core runs the workload—a big speculative core in a
Gluon multicore performs as well as a single speculative core and a small non-speculative
core in a Gluon multicore performs as poorly as a single non-speculative core. Because
heterogenous multicore systems are already shipping in (mobile and laptop) production
hardware, Gluon-type systems are more amenable to production deployments in the short-
term future. However, these systems are inflexible for resource allocation—the decision
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of how much capacity to allocate to speculative and non-speculative execution must be
made at the time of hardware manufacture—which makes them unsuitable for large-scale
multitenant infrastructures.

Chapter 4 explored the logical limits of performance for a modern superscalar archi-
tecture without speculation. Tachyon-type cores entirely eliminate speculative execution,
so they are more secure than either Gluon-type multicores or Dyon-type cores, but they
also cannot use speculation to improve performance even when it would be safe to do so.
Performance of a Tachyon-type core is never as good as an equivalently sized speculative
core, but it can be improved by increasing the size of fetch and issue stage components of
the pipeline. Initial results suggest that a full implementation of superpositional pipelining
may further improve the performance of Tachyon-type cores. It is unlikely that non-
speculative superscalar cores will ever match the performance of unmitigated speculative
cores, but it is feasible that they may reach the point of consistently performing as well
as or better than speculative cores with all relevant speculative execution mitigations
applied. The performance potential of Tachyon-type cores, combined with the ability to
completely eliminate the speculative execution vulnerabilities, places them in the running
as a viable solution. Tachyon-type cores may be suitable for special-purpose multitenant
infrastructure deployments that exclusively serve privacy-centric workloads or are hosted
in legal jurisdictions with strong data privacy laws. However, keeping speculative execution
features as an option for peak performance will be desirable for most general-purpose
multitenant infrastructure deployments.

Chapter 5 explored the potential for hardware architectures that include both specula-
tive and non-speculative instructions on a single core. Dyon-type cores give the systems
software developer precise control over when to use speculation features, at the level of a sin-
gle instruction. Performance degrades gradually in proportion to the use of non-speculative
instructions—code compiled as entirely speculative pays no performance penalty, and
code compiled as lightly non-speculative only pays a minor performance penalty—so
Dyon-type cores have peak performance equivalent to speculative cores, while also allowing
for fine-grained control over speculative execution. Dyon-type cores are more flexible than
Gluon-type multicores for resource allocation in large-scale multitenant infrastructures,
because all cores in the system are identical and equally able to combine speculative
and non-speculative execution. Dyon-type cores are most suitable for general-purpose
multitenant infrastructure deployments, because they put the choice of when to trade
performance for security into the hands of the customers, and maintain flexibility in
resource allocation, without sacrificing performance in the common case.

6.1 Future work

The scope of this dissertation has been limited to what one researcher can accomplish
in a short period of time. While the work is enough to reveal promising potential, it
is tantamount to the opening bars of a symphony. A complete hardware design and
implementation based on the concepts discussed would be an extensive and multi-year
research agenda for a group of researchers. This section briefly discusses some future
research directions suggested by this work.
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6.1.1 Heterogeneous multicores

While Gluon-type multicores are not a good choice for large-scale multitenant infras-
tructures, they may be a reasonable approach to consider for mobile and laptop devices,
which have less extreme requirements for flexible resource allocation. The disruption
of shifting to Gluon-type multicores would be particularly minimal in products where
the hardware is already running a combination of big and little cores for performance
and energy consumption considerations, as in some modern smartphones and Apple’s M1
laptops.

It would be interesting to investigate the performance impact of splitting up workloads
to keep security-critical sections of code on non-speculative cores. We anticipate that the
added overhead of inter-process communication between speculative and non-speculative
sections of code running on different cores would have a performance penalty, but measuring
how much of a penalty would require a set of custom benchmark workloads to explore the
relative performance of fully speculative, fully non-speculative, and partially speculative
workloads on Gluon-type multicores.

It would also be worth exploring whether the performance gap between the speculative
and non-speculative cores of a Gluon-type multicore could be improved by using Tachyon-
type cores instead of in-order scalar cores for the non-speculative half. Such a system would
be less useful for reducing energy consumption in mobile and laptop devices, but could be
more useful for improving security on desktop devices without sacrificing performance.

6.1.2 Non-speculative cores

The limited prototype of Tachyon-type cores in Chapter 4 only disables branch prediction
on a superscalar core. It does not fully implement superpositional branch pipelining, and
still uses speculative memory loads. The most promising future research directions for
Tachyon-type cores are to fully implement superpositional branch pipelining—freeing up
the fetch stage bottleneck for branches by fetching and issuing instructions from both
branch paths in parallel, as in Section 4.2.2—and to implement speculation buffers—
keeping partially speculative memory loads but isolating them from the cache hierarchy,
as in Section 4.2.5.

The Chipyard framework and FireSim platform used in this dissertation have somewhat
rigid definitions of the cache and memory hierarchy, so something like the gem5 simulator
is a better choice for experimenting with speculation buffers for memory loads. We found
gem5’s RISC-V implementation to be highly unstable, even with default core and cache
implementations and plain vanilla SPEC CPU 2006/2017 benchmark workloads. Any
researcher continuing this work should be prepared to either invest a substantial amount
of time in improving gem5’s RISC-V implementation, or else migrate the experiment to
the ARM or x86 architectures, which have mature and stable implementations in the gem5
simulator.

Several further research avenues are worth considering for improving the performance
of Tachyon-type cores. Increasing the size of fetch and issue stage components in the
pipeline showed potential in the prototype, and could be explored further in combination
with superpositional branches and speculation buffers. The largest Tachyon prototypes
were too large to fit on an AWS F1 FPGA, but FireSim’s Golden Gate compiler does have
some limited ability to split RTL simulations across multiple FPGAs, while still producing
bit-identical, cycle-accurate results—which may make it possible to test larger cores on
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FireSim, instead of only on Verilator. Multi-threading is another avenue worth exploring
for Tachyon-type cores, for efficiency through parallelism rather than speculation. Running
multiple threads on each core means the pipeline is less likely to stall, because even if it
is held up on one workload waiting for a non-speculative branch condition to evaluate
or a memory load to complete, it can still keep instructions for other workloads flowing
through the execution stage. The addition of dedicated functional units for evaluating
branch conditions, separate from the general ALUs, might be worth exploring as a way to
improve throughput by ensuring that branch conditions are always evaluated as soon as
possible, and not held up by other arithmetic or logic instructions in the pipeline.

6.1.3 Demi-speculative cores

The limited prototype of Dyon-type cores in Chapter 5 only disables branch prediction
for the non-speculative instructions in the ISA extension. It does not fully implement
superpositional branch pipelining, and still uses speculative memory loads. All the research
avenues suggested above for Tachyon-type cores would also benefit Dyon-type cores.

One research avenue that might be worth pursuing for demi-speculative cores—instead
of adding non-speculative instructions as an ISA extension—would be to split the RISC-
V or ARM user mode into a more privileged speculative user mode (using speculative
instructions) and a less privileged non-speculative user mode (using alternative non-
speculative instructions). Selecting speculation with RISC-V or ARM modes would not
give systems software developers as fine-grained control over speculative execution as an
ISA extension can, but it would avoid the complexity of modifying the compiler toolchain
to select non-speculative instructions, and would mean that any software compiled for the
standard ISA could be run in either the speculative or non-speculative mode. On x86
architectures, a similar effect could be achieved using a model-specific register (MSR) to
select non-speculative instructions within (for example) a virtualization context, however
x86 MSRs are far less flexible than RISC-V or ARM modes.
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